Measurement of the Polarization Parameter in 24-GeV/c Proton Proton Elastic Scattering at Small Momentum Transfers

Crabb, D.G. ; Green, K. ; Kyberd, P. ; et al.
Nucl.Phys.B 121 (1977) 231-236, 1977.
Inspire Record 124254 DOI 10.17182/hepdata.35517

A measurement of the polarization parameter P 0 in pp elastic scattering has been made at 24 GeV/ c over the range | t | = 0.1 to 0.9 (GeV/ c ) 2 , positive, falling to zero around | t | = 0.8 (GeV/ c ) 2 . For the range 0.1 ⪕ |t| ⪕ 0.4 GeV /c) 2 , P 0 is constant at about 0.03.

1 data table match query

Axis error includes +- 5/5 contribution (SYS-ERR DUE MAINLY TO UNCERTAINTY IN KNOWLEDGE OF ABSOLUTE VALUE OF TARGET POLARIZATION).


Measurement of the Analyzing Power for $p p$ (Polarized) $\to p p$ at $p^-$transverse**2 = 6.5-{GeV}/$c^2$

Cameron, P.R. ; Crabb, D.G. ; DeMuth, G.E. ; et al.
Phys.Rev.D 32 (1985) 3070, 1985.
Inspire Record 216507 DOI 10.17182/hepdata.23543

The spin analyzing power A in 28-GeV/c proton-proton elastic scattering was measured at P⊥2=6.5 (GeV/c)2 using a polarized proton target and a high-intensity unpolarized proton beam at the Brookhaven National Laboratory Alternating Gradient Synchrotron. The result of (24±8)% confirms that the analyzing power is large and rising in the large-P⊥2 region.

1 data table match query

No description provided.


Large $p^-$transverse**2 Spin Effects in $p p \to p p$

Peaslee, D.C. ; O'Fallon, J.R. ; Simonius, M. ; et al.
Phys.Rev.Lett. 51 (1983) 2359, 1983.
Inspire Record 192857 DOI 10.17182/hepdata.20491

The analyzing power A in 28-GeV/c proton-proton elastic scattering was measured with a polarized proton target and a high-intensity unpolarized proton beam at the Brook-haven National Laboratory alternating-gradient synchrotron. The P⊥2 range of 2.85 to 5.95 (GeV/c)2 was covered with good precision. A small dip of about -3.5% was found near P⊥2=3.5 (GeV/c)2 where a 24-GeV/c CERN experiment had reported a deep dip of about -16% with large errors. In the previously unexplored large-P⊥2 region near 6 (GeV/c)2 these new large-error points suggest that A may be rising.

1 data table match query

No description provided.


Spin Effects in $p p$ Elastic Scattering at 28-{GeV}/$c$

Hansen, P.H. ; O'Fallon, J.R. ; Danby, G.T. ; et al.
Phys.Rev.Lett. 50 (1983) 802, 1983.
Inspire Record 182130 DOI 10.17182/hepdata.20535

The analyzing power, A, was measured in proton-proton elastic scattering with use of a polarized proton target and 28-GeV/c primary protons from the alternating-gradient synchrotron. Over the P⊥2 range of 0.5 to 2.8 (GeV/c)2, the data show interesting structure. There is a rather sharp dip at P⊥2=0.8 (GeV/c)2 corresponding to the break in the elastic differential cross section at the end of the diffraction peak.

1 data table match query

No description provided.


Analyzing power measurements in high‐P2∥ p‐p elastic scattering

Raymond, R.S. ; Brown, K.A. ; Bruni, R.J. ; et al.
AIP Conf.Proc. 123 (1984) 1123-1125, 1984.
Inspire Record 201609 DOI 10.17182/hepdata.18612

The analyzing power in 28 GeV/c proton/proton elastic scattering was measured at P2∥=5.95 and 6.56 (GeV/c)2 using a polarized proton target and an unpolarized proton beam at the Brookhaven National Laboratory AGS. Results indicate that the analyzing power, A, is rising sharply with P2∥.

1 data table match query

No description provided.


High precision measurement of A in large P(T)**2 spin polarized 24-GeV/c proton proton elastic scattering

Crabb, D.G. ; Kaufman, W.A. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 65 (1990) 3241-3244, 1990.
Inspire Record 299843 DOI 10.17182/hepdata.19939

We measured the analyzing power A out to P⊥2=7.1 (GeV/c)2 with high precision by scattering a 24-GeV/c unpolarized proton beam from the new University of Michigan polarized proton target; the target’s 1-W cooling power allowed a beam intensity of more than 2×1011 protons per pulse. This high beam intensity together with the unexpectedly high average target polarization of about 85% allowed unusually accurate measurements of A at large P⊥2. These precise data confirmed that the one-spin parameter A is nonzero and indeed quite large at high P⊥2; most theoretical models predict that A should go to zero.

1 data table match query

Errors quoted contain both statistical and systematic uncertainties.


Measurement of the Polarization Parameter in 24-{GeV}/$c P P$ Elastic Scattering at Large Momentum Transfers

Antille, J. ; Dick, L. ; Werlen, M. ; et al.
Nucl.Phys.B 185 (1981) 1-19, 1981.
Inspire Record 170364 DOI 10.17182/hepdata.34279

A measurement of the polarization parameter P 0 in pp elastic scattering has been made at 24 GeV/ c over the range of momentum transfer squared 0.7 < | t | < 5.0 (GeV/ c ) 2 . The structure of P 0 has changed compared to typical lower energy data. The second peak is suppressed and a dip has appeared at | t | = 3.6 (GeV/ c ) 2 .

1 data table match query

No description provided.


Energy Dependence of Spin Spin Forces in 90-degrees (Center-of-mass) Elastic $p p$ Scattering

Lin, A. ; O'Fallon, J.R. ; Ratner, L.G. ; et al.
Phys.Lett.B 74 (1978) 273-276, 1978.
Inspire Record 129169 DOI 10.17182/hepdata.27461

We measured d σ d t(90° cm ) for ↑+ p ↑→ p + p from 1.75 to 5.5 GeV/ c , using the Argonne zero-gradient synchrotron 70% polarized proton beam and a 70% polarized proton target. We found that the spin-spin correlation parameter. A nn , equals 60% at low energy, then drops sharply to about 10% near 3.5 GeV/ c , and remains constant up to 5.5 GeV/ c .

2 data tables match query

ANALYZING POWER. QUOTED ERRORS DUE TO 4.3 PCT POINT TO POINT RELATIVE ERROR.

THE SPIN-SPIN CORRELATION PARAMETER CNN IS NOW DENOTED BY ANN ACCORDING TO THE NEW ANN ARBOR CONVENTION.


Spin Spin Interactions in High p-Transverse**2 Elastic p p Scattering

O'Fallon, J.R. ; Ratner, L.G. ; Schultz, P.F. ; et al.
Phys.Rev.Lett. 39 (1977) 733, 1977.
Inspire Record 5637 DOI 10.17182/hepdata.20968

We measured dσdt for p+p→p+p at 11.75 GeV/c using the zero-gradient synchrotron 70% polarized-proton beam and a 65% polarized-proton target. We obtained the spin-orbit asymmetry parameter A and the spin-spin correlation parameter Cm out to P⊥2=4.2 (GeV/c)2. We found that A drops smoothly towards zero, but that Cnn increases abruptly near P⊥2=3.6 (GeV/c)2, where the exp(−1.4P⊥2) component of elastic scattering becomes dominant. This suggests that large-P⊥2 "hard" elastic scattering may occur mostly when the two proton spins are parallel.

1 data table match query

No description provided.


The Acceleration of Polarized Protons to 22-{GeV}/$c$ and the Measurement of Spin Spin Effects in $p$ (Polarized) + $p$ (Polarized) $\to p + p$

Khiari, F.Z. ; Cameron, P.R. ; Court, G.R. ; et al.
Phys.Rev.D 39 (1989) 45, 1989.
Inspire Record 262472 DOI 10.17182/hepdata.23245

Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter Ann in large- P⊥2 proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P⊥2=0.3 (GeV/c)2 at 13.3 GeV/c. At 18.5 GeV/c we found that Ann=(-2±16)% at P⊥2=4.7 (GeV/c)2, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P⊥2.

3 data tables match query

No description provided.

2.2 GeV point taken from Brown et al., PR D31(85) 3017.

No description provided.