Energy Dependence of Spin Spin Forces in 90-degrees (Center-of-mass) Elastic $p p$ Scattering

Lin, A. ; O'Fallon, J.R. ; Ratner, L.G. ; et al.
Phys.Lett.B 74 (1978) 273-276, 1978.
Inspire Record 129169 DOI 10.17182/hepdata.27461

We measured d σ d t(90° cm ) for ↑+ p ↑→ p + p from 1.75 to 5.5 GeV/ c , using the Argonne zero-gradient synchrotron 70% polarized proton beam and a 70% polarized proton target. We found that the spin-spin correlation parameter. A nn , equals 60% at low energy, then drops sharply to about 10% near 3.5 GeV/ c , and remains constant up to 5.5 GeV/ c .

2 data tables match query

ANALYZING POWER. QUOTED ERRORS DUE TO 4.3 PCT POINT TO POINT RELATIVE ERROR.

THE SPIN-SPIN CORRELATION PARAMETER CNN IS NOW DENOTED BY ANN ACCORDING TO THE NEW ANN ARBOR CONVENTION.


Spin Spin Interactions in High p-Transverse**2 Elastic p p Scattering

O'Fallon, J.R. ; Ratner, L.G. ; Schultz, P.F. ; et al.
Phys.Rev.Lett. 39 (1977) 733, 1977.
Inspire Record 5637 DOI 10.17182/hepdata.20968

We measured dσdt for p+p→p+p at 11.75 GeV/c using the zero-gradient synchrotron 70% polarized-proton beam and a 65% polarized-proton target. We obtained the spin-orbit asymmetry parameter A and the spin-spin correlation parameter Cm out to P⊥2=4.2 (GeV/c)2. We found that A drops smoothly towards zero, but that Cnn increases abruptly near P⊥2=3.6 (GeV/c)2, where the exp(−1.4P⊥2) component of elastic scattering becomes dominant. This suggests that large-P⊥2 "hard" elastic scattering may occur mostly when the two proton spins are parallel.

1 data table match query

No description provided.


The Acceleration of Polarized Protons to 22-{GeV}/$c$ and the Measurement of Spin Spin Effects in $p$ (Polarized) + $p$ (Polarized) $\to p + p$

Khiari, F.Z. ; Cameron, P.R. ; Court, G.R. ; et al.
Phys.Rev.D 39 (1989) 45, 1989.
Inspire Record 262472 DOI 10.17182/hepdata.23245

Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter Ann in large- P⊥2 proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P⊥2=0.3 (GeV/c)2 at 13.3 GeV/c. At 18.5 GeV/c we found that Ann=(-2±16)% at P⊥2=4.7 (GeV/c)2, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P⊥2.

3 data tables match query

No description provided.

2.2 GeV point taken from Brown et al., PR D31(85) 3017.

No description provided.


MEASUREMENT OF P (POLARIZED) P (POLARIZED) ---> P P WITH A 16.5-GEV/C POLARIZED PROTON BEAM

Brown, K.A. ; Bruni, R.J. ; Cameron, P.R. ; et al.
Phys.Rev.D 31 (1985) 3017-3020, 1985.
Inspire Record 220234 DOI 10.17182/hepdata.23579

Using the new Brookhaven Alternating Gradient Synchrotron polarized proton beam and our polarized proton target, we measured the spin-spin correlation parameter Ann in 16.5-GeV/c proton-proton elastic scattering. We found an Ann of (6.1±3.0)% at P⊥2=2.2 (GeV/c)2. We also measured the analyzing power A in two independent ways, providing a good test of possible experimental errors. Comparing our new data with 12-GeV Argonne Zero Gradient Synchrotron data shows no evidence for strong energy dependence in Ann in this medium-P⊥2 region.

1 data table match query

ERROR CONTAINS BOTH SYSTEMATIC AND STATISTICAL UNCERTAINTY.


Measurement of Spin Effects in $p$ (Polarized) $p$ (Polarized) $\to p p$ at 18.5-{GeV}/$c$

Crabb, D.G. ; Gialas, I. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 60 (1988) 2351, 1988.
Inspire Record 261135 DOI 10.17182/hepdata.20096

We measured the analyzing power A and the spin-spin correlation parameter Ann in medium-P⊥2 proton-proton elastic scattering, using a polarized-proton target and the 18.5-GeV/c Brookhaven Alternating-Gradient Synchrotron polarized-proton beam. We found sharp dips in both A and Ann, which occur at different P⊥2 values. The unexpected sharp structure in the spin-spin force occurs near P⊥2=2.3 (GeV/c)2 where the elastic cross section has no apparent structure.

1 data table match query

Errors contain both statistics and systematics.


Energy Dependence of Spin Effects in $p$ (Polarized) $p$ (Polarized) $\to p p$

Court, G.R. ; Crabb, D.G. ; Gialas, I. ; et al.
Phys.Rev.Lett. 57 (1986) 507, 1986.
Inspire Record 229812 DOI 10.17182/hepdata.20190

We measured the analyzing power A and the spin-spin correlation parameter Ann, in large-P⊥2 proton-proton elastic scattering, using a polarized-proton target and the polarized-proton beam at the Brookhaven Alternating-Gradient Synchrotron. We also used our polarimeter to measure A at small P⊥2 at 13 GeV with good precision and found some deviation from the expected 1Plab behavior. At 18.5 GeV/c we found Ann=(−2±16)% at P⊥2=4.7 (GeV/c)2. Comparison with lower-energy data from the Argonne Zero-Gradient Synchrotron shows a sharp and surprising energy dependence for Ann at large P⊥2.

3 data tables match query

POL is error weighted average of polarized beam and target measurements.

POL is error-weighted average of polarized beam and target measurements.

POL is error-weighted average of polarized beam and target measurement.


Spin Spin Forces in 6-{GeV}/$c$ Neutron - Proton Elastic Scattering

Crabb, D.G. ; Hansen, P.H. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 43 (1979) 983, 1979.
Inspire Record 141922 DOI 10.17182/hepdata.20753

Measurement was made of dσdt for n↑+p↑→n+p at P⊥2=0.8 and 1.0 (GeV/c)2 at 6 GeV/c. The 6-GeV/c 53%-polarized neutrons from the 12-GeV/c polarized deuteron beam at the Argonne zero-gradient synchroton were scattered from our 75%-polarized proton target. Both spins were oriented perpendicular to the scattering plane. We found large unexpected spin-spin effects in n−p elastic scattering which are quite different from the p−p spin-spin effects.

1 data table match query

No description provided.


Measurements of Spin Parameters in $p p$ Elastic Scattering at 6-{GeV}/$c$

Linn, S.L. ; Perlmutter, A. ; Crosbie, E.A. ; et al.
Phys.Rev.D 26 (1982) 550, 1982.
Inspire Record 11848 DOI 10.17182/hepdata.23900

We measured the differential cross section for proton-proton elastic scattering at 6 GeV/c, with both initial spins oriented normal to the scattering plane. The analyzing power A shows significant structure with a large broad peak reaching about 24% near P⊥2=1.6 (GeV/c)2. The spin-spin correlation parameter Ann exhibits more dramatic structure, with a small but very sharp peak rising rapidly to about 13% at 90°c.m.. This sharp peak may be caused by particle-identity effects.

1 data table match query

No description provided.


Energy Dependence of Spin Spin Effects in p p Elastic Scattering at 90-Degrees Center-Of-Mass

Crosbie, E.A. ; Ratner, L.G. ; Schultz, P.F. ; et al.
Phys.Rev.D 23 (1981) 600, 1981.
Inspire Record 152851 DOI 10.17182/hepdata.24077

The energy dependence of the spin-parallel and spin-antiparallel cross sections for p↑+p↑→p+p at 90°c.m. was measured for beam momenta between 6 and 12.75 GeV/c. The ratio (dσdt)parallel:(dσdt)antiparallel at 90° is about 1.2 up to 8 GeV/c and then increases rapidly to a value of almost 4 near 11 GeV/c. Our data indicate that this ratio may depend only on the variable P⊥2, and suggests that the ratio may reach a limiting value of about 4 for large P⊥2.

13 data tables match query
More…

Spin Dependence of High p-Transverse**2 Elastic p p Scattering

Crabb, D.G. ; Fernow, Richard C. ; Hansen, P.H. ; et al.
Phys.Rev.Lett. 41 (1978) 1257, 1978.
Inspire Record 7117 DOI 10.17182/hepdata.20867

We measured dσdt for p↑+p↑→p+p from P⊥2=4.50 to 5.09 (GeV/c)2 at 11.75 GeV/c. We used a 59%-polarized proton beam and a 71%-polarized proton target with both spins oriented perpendicular to the scattering plane. In these large-P⊥2 hard-scattering events, spin effects are very large and the ratio (dσdt)↑↑:(dσdt)↑↓ grows rapidly with increasing P⊥2, reaching a value of 4 at 90° (c.m.). Thus, hard elastic scattering, which is presumably due to the direct scattering of the protons' constituents, may only occur when the two incident protons' spins are parallel.

1 data table match query

THE ERRORS INCLUDE STATISTICAL AND SYSTEMATIC ERRORS ADDED IN QUADRATURE. THE PARALLEL/ANTIPARALLEL SPIN CROSS SECTION RATIO IS (1+CNN)/(1-CNN).