Search for Narrow Baryons in $\pi^- p$ Elastic Scattering at Large Angles

The CERN-College de France-Ecole Poly collaboration Baillon, P. ; Barrelet, E. ; Benayoun, Maurice ; et al.
Phys.Lett.B 94 (1980) 533-540, 1980.
Inspire Record 153784 DOI 10.17182/hepdata.27177

Hoping to find resonant structures in the momentum dependence of π − p elastic scattering we have measured the differential cross section for this reaction at c.m. angles near 90°. An intense pion beam (≈ 10 7 π /s) has been used, together with a high incident momentum resolution (d P / P ≈ 2 × 10 −4 ), to scan the region of laboratory momenta from 5.75 to 13.02 GeV/ c (c.m. energy from 3.42 to 5.03 GeV). The sensitivity attained by the experiment is such that signals would have been seen corresponding to the formation of non-strange baryon resonances having width larger than ≈ 0.1 MeV and elasticity larger than a few per cent. Within these limits no resonances were sighted.

1 data table match query

ENERGY SCAN IN BINS OF D(PLAB)/PLAB OF 5*10**-4 AT FOUR FIXED ANGLES (COS(THETA) = -0.4 TO 0.4).


Hidden Strangeness in the Proton? Determination of the Real Part of the Isospin Even - Forward Scattering Amplitude of Pion Nucleon Scattering at 54.3-{MeV}

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.D 40 (1989) 3568-3581, 1989.
Inspire Record 287810 DOI 10.17182/hepdata.23079

The contradiction of the σ term of pion-nucleon scattering as deduced from the Karlsruhe-Helsinki phase shifts with the smaller value calculated by the chiral perturbation theory of QCD is well known. In an effort to clarify the discrepancy we have determined the real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering at a pion energy Tπ=54.3 MeV by measurement of the elastic scattering of positive and negative pions on protons in the Coulomb-nuclear interference region. The deduced value is in agreement with the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. The resulting large value of the σ term may be interpreted as being due to the influence of s¯s sea pairs even at large distances (small Q2) as previously suggested by the European Muon Collaboration measurement of deep-inelastic scattering of polarized muons on polarized protons.

1 data table match query

No description provided.


Study of pi- Meson Elastic Scattering by Protons at Small Angles

Apokin, V.D. ; Derevshchikov, A.A ; Matulenko, Yu.A. ; et al.
Yad.Fiz. 21 (1975) 1240-1246, 1975.
Inspire Record 103333 DOI 10.17182/hepdata.19099

None

3 data tables match query

No description provided.

No description provided.

IM(AMP) VIA OPTICAL THEOREM FROM TOTAL CROSS SECTIONS OF L. M. VASILYEV ET AL., PL 36B, 528 (1971).


Determination of the Real Part of the Isospin Even Forward Scattering Amplitude of Pion Nucleon Scattering at 55-{MeV} as a Test of Low-energy Quantum Chromodynamics

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.Lett. 58 (1987) 648-650, 1987.
Inspire Record 246624 DOI 10.17182/hepdata.20153

The real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering has been determined at a pion energy of Tπ=55 MeV by measurement of the elastic scattering of positive and negative pions on protons within the Coulomb-nuclear interference region. The value confirms the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. These phases have been used to determine the σ term of pion-nucleon scattering by means of dispersion relations, resulting in a value for σ which is in contradiction with chiral perturbation theory of QCD.

1 data table match query

PI- P cross sections normalised to the Coulomb cross section taken from the Karlesruhe-Helsinki phase shift analysis (R. Koch, E. Pietarinen (NP A336(80)331).


High-Energy Proton-Proton Scattering

Diddens, A.N. ; Lillethun, E. ; Manning, G. ; et al.
Phys.Rev.Lett. 9 (1962) 111-114, 1962.
Inspire Record 46897 DOI 10.17182/hepdata.19387

None

1 data table match query

Operation and Performance of a System for $\pi p$ and $\pi D$ Backward Scattering

Stanovnik, A. ; Kernel, G. ; Tanner, N.W. ; et al.
Nucl.Instrum.Meth. 177 (1980) 369, 1980.
Inspire Record 152948 DOI 10.17182/hepdata.41451

A simple, large-solid-angle apparatus, specially suited for the measurement of backward elastic scattering of medium-energy pions on protons and deuterons, is described. The method of analysis which reduces background and determines elastic events from a data sample of 185 MeV negative pions incident on a D 2 O target is discussed. Results for 141 MeV π + p and 185 MeV π − p backward cross-sections are also presented and compared with cross-sections calculated from known phase shifts.

2 data tables match query

pi+- p differential cross sections at low energies.

Denz, H. ; Amaudruz, P. ; Brack, J.T. ; et al.
Phys.Lett.B 633 (2006) 209-213, 2006.
Inspire Record 699647 DOI 10.17182/hepdata.31620

Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.

12 data tables match query

Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.

More…

Elastic Backward Scattering of Negative Pions on Protons at 25-GeV/c and 38-GeV/c

Babaev, A. ; Brakhman, E. ; Danilov, M. ; et al.
Phys.Lett.B 67 (1977) 351, 1977.
Inspire Record 109000 DOI 10.17182/hepdata.39798

The backward elastic scattering reaction π − p → p π − at momenta 25 and 38 GeV/ c have been measured using a magnetic spectrometer with hybrid chambers. The experimental data on the dependence of the cross section d σ /d u on the momentum transfer u as well as the energy dependence d σ /d u at u = 0 are given.

2 data tables match query

Measurements of pi- p elastic scattering from 1.71 to 5.53 gev/c

Fellinger, M. ; Gutman, E. ; Lamb, R.C. ; et al.
Phys.Rev.D 2 (1970) 1777-1782, 1970.
Inspire Record 61322 DOI 10.17182/hepdata.47092

The π−p elastic scattering differential cross section has been obtained at 18 incident momenta from 1.71 to 5.53 GeV/c. The measurements were taken over a limited range of squared four-momentum transfer t near the forward direction. The statistical accuracy and resolution of these data are comparable to, or better than, existing data. The parameter b in the expression dσdt=Aebt has been determined at each of our incident momenta, and a large (∼25%) enhancement in b as a function of momentum is observed at a c.m. energy of ∼2290 MeV. The relation of this bump in b with the well-established bump in the total π−p cross section at ∼2200 MeV is discussed.

18 data tables match query

No description provided.

No description provided.

No description provided.

More…

$pi^- -- p$ interactions at 905, 960, and 1100 {MeV}

Pickup, E. ; Robinson, D.K. ; Salant, E.O. ; et al.
Phys.Rev. 132 (1963) 1819-1830, 1963.
Inspire Record 44761 DOI 10.17182/hepdata.75462

Single-pion production in π−−p interactions has been studied at 905, 960, and 1100 MeV. Comparison with the isobar and one-pion-exchange (OPE) mechanisms of pion production shows that, below 1 BeV, pion production occurs primarily through the formation of an intermediate excited state of the nucleon (isobar), while at higher energies the influence of the ρ resonance in the ππ system becomes increasingly important. There is some evidence for an I=2 state in the events at the lower energies.

2 data tables match query

No description provided.

No description provided.