Measurements of the Spin Spin Correlation Parameter C(ss) = (S,s:o,o) at 487-{MeV}, 639-{MeV} and 791-{MeV}

Ditzler, W.R. ; Hill, D. ; Imai, K. ; et al.
Phys.Rev.D 29 (1984) 2137, 1984.
Inspire Record 201499 DOI 10.17182/hepdata.23771

The spin-spin correlation parameter CSS=(S,S;0,0) has been measured for p−p elastic scattering over a large angular range. The data are particularly useful in checking currently available phase-shift solutions.

3 data tables match query

No description provided.

No description provided.

No description provided.


Measurements of Triple and Double Spin Parameters in Elastic $p p$ Scattering at 6-{GeV}/$c$

Auer, I.P. ; Chalmers, J. ; Colton, E. ; et al.
Phys.Rev.D 32 (1985) 1609, 1985.
Inspire Record 213562 DOI 10.17182/hepdata.23547

Toward the goal of experimentally determining the p-p elastic-scattering amplitudes at 6 GeV/c, we have measured a number of triple- and double-spin correlation parameters over the ‖t‖ range between 0.2 and 1.0 (GeV/c)2. These new data permit the first nucleon-nucleon amplitude determination in the multi-GeV energy range. Polarized beams from the Argonne Zero Gradient Synchrotron and polarized targets were utilized. The polarization of the recoil proton was measured with a carbon polarimeter. A total of 14 different spin observables were measured (five spin transfer, four depolarization, and five triple-spin correlation parameters). These have been combined with earlier results, resulting in a data set of typically 30 measurements of 20 different spin observables for each of six ‖t‖ values between 0.2 and 1.0 (GeV/c)2. A solution for the amplitudes has been found at each ‖t‖, and comparisons are presented with several different models. The spin-nonflip helicity amplitudes are found to be much larger than the spin-flip amplitudes.

2 data tables match query

No description provided.

No description provided.


First Measurement of the Real Part of a $p p$ Double Spin Flip Amplitude

Gazzaly, M.M. ; Pauletta, G. ; Tanaka, N. ; et al.
Phys.Rev.Lett. 58 (1987) 1084, 1987.
Inspire Record 247888 DOI 10.17182/hepdata.20181

The asymmetry ANN for pp elastic scattering has been measured at 800 and 650 MeV in the region of Coulomb-nuclear interference. The data have been analyzed to extract the real part of a spin-spin scattering amplitude. Results are compared with the predictions of forward dispersion relations. They disagree significantly at 650 MeV.

2 data tables match query

No description provided.

No description provided.


Measurements of Spin Spin Correlation Parameters Up to 2.5-{GeV}/$c$ Incident Momentum for a Decisive Clarification of the Structure Observed in the $p p$ System

Auer, I.P. ; Colton, E. ; Ditzler, W.R. ; et al.
Phys.Rev.Lett. 51 (1983) 1411, 1983.
Inspire Record 191101 DOI 10.17182/hepdata.20512

Recent data are presented on spin-spin correlation parameters CLL=(L,L;0,0) and CSL=(S,L;0,0) at forward angles from 1.18 to 2.47 GeV/c incident momenta in proton-proton elastic scattering. Values for ΔσL (inelastic) are derived and are shown to disagree with predictions of theoretical models attempting to describe p−p scattering without dibaryon resonances. Finally, the CLL and CSL data discriminate among various phase-shift solutions, and will lead to a clarification of the p−p phase shifts.

2 data tables match query

No description provided.

No description provided.


MEASUREMENT OF THE P P ELASTIC SCATTERING SPIN PARAMETER C(LL) AT 11.75-GEV/C FOR THETA (C.M.) = 48-DEGREES - 90-DEGREES

Auer, I.P. ; Colton, E. ; Ditzler, W.R. ; et al.
Phys.Rev.Lett. 52 (1984) 808-810, 1984.
Inspire Record 202204 DOI 10.17182/hepdata.20434

Results are presented of a measurement of the proton-proton elastic-scattering spin parameter CLL=(L,L;0,0) at 11.75 GeV/c and θc.m.=48°−90°. The value of CLL is nearly constant and is approximately -0.16 in this angular region. This behavior is consistent with only one of the many models proposed describing the interaction via the hard scattering of two quarks.

2 data tables match query

NUMERICAL VALUES OF DATA SUPPLIED BY H. SPINKA.

ESTIMATED VALUE OF CSS (90 DEG) DETERMINED FROM PRESENT DATA ON CLL AND DATA OF CRABB ET AL., (PRL 41, 1257) AND CROSBIE ET AL., (PR D23, 600) FOR CNN VIA THE RELATION CNN-CSS-CLL=1 (90 DEG). ERROR CONTAINS BOTH SYSTEMAT8ICS AND STATISTICS.


STRUCTURE OBSERVED IN THE SPIN SPIN CORRELATION PARAMETER C(LL) = (L, L, 0, 0) IN P P ELASTIC SCATTERING AROUND THETA (C.M.) = 90-DEGREES IN THE REGION P(LAB) = 2.5-GEV/C - 5.0-GEV/C

Auer, I.P. ; Chang-Fang, C. ; Colton, E. ; et al.
Phys.Rev.Lett. 48 (1982) 1150-1152, 1982.
Inspire Record 180637 DOI 10.17182/hepdata.20626

The spin-spin correlation parameter CLL=(L, L; 0, 0) has been measured for p−p elastic scattering around θc.m.=90° up to plab=5 GeV/c. An interesting energy dependence is observed in CLL and the results are interpreted by comparison with other available data.

1 data table match query

NUMERICAL VALUES OF DATA IN FIGURE SUPPLIED BY A. YOKOSAWA.


Measurement of the spin correlation parameter A00kk for pp elastic scattering in the energy range 0.72–1.1 GeV

Bystricky, J. ; Chaumette, P. ; Deregel, J. ; et al.
Nucl.Phys.B 258 (1985) 90623 483-504, 1985.
Inspire Record 221352 DOI 10.17182/hepdata.33761

The spin correlation parameter A00kk (pp) has been measured in the angular region 45°<θCM<90° at 0.719, 0.834, 0.874, 0.934, 0.995 and 1.095 GeV using the SATURNE II polarized proton beam incident on a polarized target. The parameters A00nn(pp and A00sk(pp) were measured at 0.874 in the same angular region.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

C(LL) = (L, L: 0, 0) MEASUREMENTS AND A STRUCTURE DUE TO A P PARTIAL WAVE IN THE P P SYSTEM

Burleson, G.r. ; Cottingame, W.b. ; Greene, S.j. ; et al.
Nucl.Phys.B 213 (1983) 365-370, 1983.
Inspire Record 191085 DOI 10.17182/hepdata.34015

Measurements of C LL of pp elastic scattering near θ c.m. = 90° at thirteen energies between 300 and 800 MeV are reported. These, together with previous values of C NN , are used to extract values of two quantities, ƒ s and ƒ t , which contain only spin-singlet and only coupled spin-triplet partial waves, respectively. The ƒ s curve, which is not dependent on C LL , exhibits the behavior expected for the previously conjectured 1 D 2 resonance. The ƒ t curve also exhibits a resonance-like behavior, which could be due either to the 3 P 0 or the 3 P 2 partial wave.

10 data tables match query

No description provided.

No description provided.

No description provided.

More…

A(ll) at Small Momentum Transfers for the First Complete Determination of the Forward $p p$ Scattering Amplitude

Pauletta, G. ; Gazzaly, M. ; Tanaka, N. ; et al.
Phys.Lett.B 211 (1988) 19-23, 1988.
Inspire Record 252973 DOI 10.17182/hepdata.29911

The asymmetry A LL for pp elastic scattering has been measured at 650 and 800 MeV in the region of Coulomb-nuclear interference. The real part of the double-spin-flip amplitude extracted from these data completes our determination of the forward pp scattering amplitudes at these energies. Comparison with the predictions of forward dispersion relations reveals a discrepancy in the spin-dependent channels at 650 MeV.

2 data tables match query

No description provided.

No description provided.


Measurement of spin correlation parameters A(NN), A(SS), and A(SL) at 2.1-GeV in proton proton elastic scattering.

Bauer, F. ; Bisplinghoff, J. ; Busser, K. ; et al.
Phys.Rev.Lett. 90 (2003) 142301, 2003.
Inspire Record 594512 DOI 10.17182/hepdata.31721

At the Cooler Synchrotron COSY/J\ulich spin correlation parameters in elastic proton-proton (pp) scattering have been measured with a 2.11 GeV polarized proton beam and a polarized hydrogen atomic beam target. We report results for A$_{NN}$, A$_{SS}$, and A_${SL}$ for c.m. scattering angles between 30$^o$ and 90$^o$. Our data on A$_{SS}$ -- the first measurement of this observable above 800 MeV -- clearly disagrees with predictions of available of pp scattering phase shift solutions while A$_{NN}$ and A_${SL}$ are reproduced reasonably well. We show that in the direct reconstruction of the scattering amplitudes from the body of available pp elastic scattering data at 2.1 GeV the number of possible solutions is considerably reduced.

1 data table match query

Spin correlation parameters.