Energy dependence of the spin-spin correlation parameter $C_{NN}$ at 50° and 90° c.m. for pp-elastic scattering in the energy range 0.69–0.95 GeV

Efimovyh, V.A. ; Kovalev, A.I. ; Poljakov, V.V. ; et al.
Phys.Lett.B 99 (1981) 28-32, 1981.
Inspire Record 1389635 DOI 10.17182/hepdata.27135

The spin-spin correlation parameter C NN at 50° and 90° c.m. for elastic pp-scattering has been obtained in the energy range 0.69–0.95 GeV. It was found that the parameter C NN (90°) shows resonance-like structure at energies near 700 MeV. Its energy dependence does not agree with Hoshizaki's phase-shift analysis predictions. C NN (50°) agrees well with these predictions and does not show any structure within the accuracy of the measurements.

1 data table match query

No description provided.


MEASUREMENT OF POLARIZATION PARAMETERS AND P P SCATTERING ANALYSIS AT 1.0-GeV

Vovchenko, V.G. ; Zhdanov, A.A. ; Kazarinov, Yu.M. ; et al.
LENINGRAD-84-995, 1984.
Inspire Record 208487 DOI 10.17182/hepdata.9315

None

2 data tables match query

No description provided.

No description provided.


MEASUREMENT OF THE POLARIZATION ROTATION COEFFICIENT A IN THE P P SCATTERING AT 970-MEV. (IN RUSSIAN)

Vovchenko, V.G. ; Gorodnitsky, G.A. ; Zhdanov, A.A. ; et al.
Yad.Fiz. 32 (1980) 164-173, 1980.
Inspire Record 159796 DOI 10.17182/hepdata.18824

None

4 data tables match query

Axis error includes +- 5/5 contribution (DUE TO ANALYZING POWER UNCERTAINTY).

Axis error includes +- 5/5 contribution (DUE TO ANALYZING POWER UNCERTAINTY).

Axis error includes +- 5/5 contribution (DUE TO ANALYZING POWER UNCERTAINTY).

More…

MEASUREMENT OF THE R PARAMETER IN P P SCATTERING AT 0.97-GEV AND ANALYSIS OF EXPERIMENTAL RESULTS ON TRIPLE SCATTERING. (IN RUSSIAN)

Vovchenko, V.G. ; Efimovykh, V.A. ; Zhdanov, A.A. ; et al.
Yad.Fiz. 33 (1981) 1551-1561, 1981.
Inspire Record 170187 DOI 10.17182/hepdata.18804

None

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

MEASUREMENTS OF THE POLARIZATION TRANSFER PARAMETER K(N00N) IN P P SCATTERING AT 800-MEV - 970-MEV

Borisov, N.S. ; Vovchenko, V.G. ; Efimovykh, V.A. ; et al.
JETP Lett. 43 (1986) 722-725, 1986.
Inspire Record 240172 DOI 10.17182/hepdata.16828

None

1 data table match query

No description provided.


Investigation of the Energy Dependence of the Spin Spin Correlation in the Diproton Resonance Region

Borisov, N.S. ; Vovchenko, V.G. ; Efimovykh, V.A. ; et al.
Sov.Phys.JETP 54 (1981) 841-847, 1981.
Inspire Record 173719 DOI 10.17182/hepdata.16987

None

2 data tables match query

No description provided.

No description provided.


The p p elastic scattering analyzing power measured with the polarized beam and the unpolarized target between 1.98-GeV and 2.80-GeV.

Allgower, C.E. ; Ball, J. ; Beddo, M. ; et al.
Nucl.Phys.A 637 (1998) 231-242, 1998.
Inspire Record 478006 DOI 10.17182/hepdata.36350

A polarized proton beam extracted from SATURNE II was scattered on an unpolarized CH 2 target. The angular distribution of the beam analyzing power A oono was measured at large angles from 1.98 to 2.8 GeV and at 0.80 GeV nominal beam kinetic energy. The same observable was determined at the fixed mean laboratory angle of 13.9° in the same energy range. Both measurements are by-products of an experiment measuring the spin correlation parameter A oon .

19 data tables match query

Analysing power measurements at a fixed laboratory angle of 13.9 degrees.

No description provided.

No description provided.

More…

Angular dependence of the p p elastic scattering spin correlation parameter A(00nn) between 0.8 and 2.8 GeV: Results for 1.80-GeV to 2.24-GeV

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Phys.Rev.C 62 (2000) 064001, 2000.
Inspire Record 539075 DOI 10.17182/hepdata.25464

Measurements at 19 beam kinetic energies between 1795 and 2235 MeV are reported for the pp elastic scattering spin correlation parameter A00nn=ANN=CNN. The c.m. angular range is typically 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters. These results are compared to previous data from Saturne II and elsewhere.

21 data tables match query

Measured values of CNN at EKIN 1795 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.110.

Measured values of CNN at EKIN 1845 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.073.

Measured values of CNN at EKIN 1935 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.095.

More…

First measurement of proton proton elastic scattering at RHIC.

Bueltmann, Stephen L. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 579 (2004) 245-250, 2004.
Inspire Record 618968 DOI 10.17182/hepdata.31705

The first result of the pp2pp experiment at RHIC on elastic scattering of polarized protons at sqrt{s} = 200 GeV is reported here. The exponential slope parameter b of the diffractive peak of the elastic cross section in the t range 0.010 <= |t| <= 0.019 (GeV/c)^2 was measured to be b = 16.3 +- 1.6 (stat.) +- 0.9 (syst.) (GeV/c)^{-2} .

1 data table match query

Measured slope of the elastic cross section.


First measurement of A(N) at s**(1/2) = 200-GeV in polarized proton proton elastic scattering at RHIC.

Bultmann, S. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 632 (2006) 167-172, 2006.
Inspire Record 688172 DOI 10.17182/hepdata.31570

We report on the first measurement of the single spin analyzing power (A_N) at sqrt(s)=200GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). Data points were measured in the four momentum transfer t range 0.01 < |t| < 0.03 (GeV/c)^2. Our result, averaged over the whole t-interval is about one standard deviation above the calculation, which uses interference between electromagnetic spin-flip amplitude and hadronic non-flip amplitude, the source of A_N. The difference could be explained by an additional contribution of a hadronic spin-flip amplitude to A_N.

1 data table match query

The single spin analyzing power for 3 T intervals.