Spin correlation measurements for p (polarized) + p (polarized) elastic scattering at 497.5-MeV

Hoffmann, G.W. ; Barlett, M.L. ; Kielhorn, W. ; et al.
Phys.Rev.C 49 (1994) 630-632, 1994.
Inspire Record 383760 DOI 10.17182/hepdata.25964

The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.

1 data table match query

Errors include statistical and systematic uncertainties.


Excitation functions of the analyzing power in p p(pol.) scattering from 0.45-GeV to 2.5-GeV

The EDDA collaboration Altmeier, M. ; Bauer, F. ; Bisplinghoff, J. ; et al.
Phys.Rev.Lett. 85 (2000) 1819-1822, 2000.
Inspire Record 537773 DOI 10.17182/hepdata.19490

Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.

26 data tables match query

No description provided.

No description provided.

No description provided.

More…

Angular dependence of the p p elastic scattering analyzing power between 0.8-GeV and 2.8-GeV. 1. Results for 1.80-GeV to 2.24-GeV

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Phys.Rev.C 60 (1999) 054001, 1999.
Inspire Record 508563 DOI 10.17182/hepdata.25566

Experimental results are presented for the pp elastic-scattering single spin observable Aoono=Aooon=AN=P, or the analyzing power, at 19 beam kinetic energies between 1795 and 2235 MeV. The typical c.m. angular range is 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters.

21 data tables match query

Measurement values of the P P analysing power at kinetic energy 1.795 GeV. The relative and additive systematic errors are +- 0.106 and 0.003.

Measurement values of the P P analysing power at kinetic energy 1.845 GeV. The relative and additive systematic errors are +- 0.068 and 0.001.

Measurement values of the P P analysing power at kinetic energy 1.935 GeV. The relative and additive systematic errors are +- 0.091 and 0.003.

More…

Measurement of Spin Spin Correlation Parameters in the $p p$ System at 11.75-{GeV}/$c$

Auer, I.P. ; Colton, E. ; Ditzler, W.R. ; et al.
Phys.Rev.D 34 (1986) 1, 1986.
Inspire Record 226969 DOI 10.17182/hepdata.23504

Final results are presented of the proton-proton elastic-scattering spin parameters CSS=(S,S;0,0) and CLS=(L,S;0,0) for thetac.m.=8°–49° and of CLL=(L,L;0,0) for thetac.m.=8°–90° at 11.75 GeV/c. Comparisons to theoretical models are also made.

1 data table match query

No description provided.


Measurements of Triple and Double Spin Parameters in Elastic $p p$ Scattering at 6-{GeV}/$c$

Auer, I.P. ; Chalmers, J. ; Colton, E. ; et al.
Phys.Rev.D 32 (1985) 1609, 1985.
Inspire Record 213562 DOI 10.17182/hepdata.23547

Toward the goal of experimentally determining the p-p elastic-scattering amplitudes at 6 GeV/c, we have measured a number of triple- and double-spin correlation parameters over the ‖t‖ range between 0.2 and 1.0 (GeV/c)2. These new data permit the first nucleon-nucleon amplitude determination in the multi-GeV energy range. Polarized beams from the Argonne Zero Gradient Synchrotron and polarized targets were utilized. The polarization of the recoil proton was measured with a carbon polarimeter. A total of 14 different spin observables were measured (five spin transfer, four depolarization, and five triple-spin correlation parameters). These have been combined with earlier results, resulting in a data set of typically 30 measurements of 20 different spin observables for each of six ‖t‖ values between 0.2 and 1.0 (GeV/c)2. A solution for the amplitudes has been found at each ‖t‖, and comparisons are presented with several different models. The spin-nonflip helicity amplitudes are found to be much larger than the spin-flip amplitudes.

2 data tables match query

No description provided.

No description provided.


First Measurement of the Real Part of a $p p$ Double Spin Flip Amplitude

Gazzaly, M.M. ; Pauletta, G. ; Tanaka, N. ; et al.
Phys.Rev.Lett. 58 (1987) 1084, 1987.
Inspire Record 247888 DOI 10.17182/hepdata.20181

The asymmetry ANN for pp elastic scattering has been measured at 800 and 650 MeV in the region of Coulomb-nuclear interference. The data have been analyzed to extract the real part of a spin-spin scattering amplitude. Results are compared with the predictions of forward dispersion relations. They disagree significantly at 650 MeV.

2 data tables match query

No description provided.

No description provided.


Measurements of Spin Spin Correlation Parameters Up to 2.5-{GeV}/$c$ Incident Momentum for a Decisive Clarification of the Structure Observed in the $p p$ System

Auer, I.P. ; Colton, E. ; Ditzler, W.R. ; et al.
Phys.Rev.Lett. 51 (1983) 1411, 1983.
Inspire Record 191101 DOI 10.17182/hepdata.20512

Recent data are presented on spin-spin correlation parameters CLL=(L,L;0,0) and CSL=(S,L;0,0) at forward angles from 1.18 to 2.47 GeV/c incident momenta in proton-proton elastic scattering. Values for ΔσL (inelastic) are derived and are shown to disagree with predictions of theoretical models attempting to describe p−p scattering without dibaryon resonances. Finally, the CLL and CSL data discriminate among various phase-shift solutions, and will lead to a clarification of the p−p phase shifts.

2 data tables match query

No description provided.

No description provided.


MEASUREMENT OF THE P P ELASTIC SCATTERING SPIN PARAMETER C(LL) AT 11.75-GEV/C FOR THETA (C.M.) = 48-DEGREES - 90-DEGREES

Auer, I.P. ; Colton, E. ; Ditzler, W.R. ; et al.
Phys.Rev.Lett. 52 (1984) 808-810, 1984.
Inspire Record 202204 DOI 10.17182/hepdata.20434

Results are presented of a measurement of the proton-proton elastic-scattering spin parameter CLL=(L,L;0,0) at 11.75 GeV/c and θc.m.=48°−90°. The value of CLL is nearly constant and is approximately -0.16 in this angular region. This behavior is consistent with only one of the many models proposed describing the interaction via the hard scattering of two quarks.

2 data tables match query

NUMERICAL VALUES OF DATA SUPPLIED BY H. SPINKA.

ESTIMATED VALUE OF CSS (90 DEG) DETERMINED FROM PRESENT DATA ON CLL AND DATA OF CRABB ET AL., (PRL 41, 1257) AND CROSBIE ET AL., (PR D23, 600) FOR CNN VIA THE RELATION CNN-CSS-CLL=1 (90 DEG). ERROR CONTAINS BOTH SYSTEMAT8ICS AND STATISTICS.


STRUCTURE OBSERVED IN THE SPIN SPIN CORRELATION PARAMETER C(LL) = (L, L, 0, 0) IN P P ELASTIC SCATTERING AROUND THETA (C.M.) = 90-DEGREES IN THE REGION P(LAB) = 2.5-GEV/C - 5.0-GEV/C

Auer, I.P. ; Chang-Fang, C. ; Colton, E. ; et al.
Phys.Rev.Lett. 48 (1982) 1150-1152, 1982.
Inspire Record 180637 DOI 10.17182/hepdata.20626

The spin-spin correlation parameter CLL=(L, L; 0, 0) has been measured for p−p elastic scattering around θc.m.=90° up to plab=5 GeV/c. An interesting energy dependence is observed in CLL and the results are interpreted by comparison with other available data.

1 data table match query

NUMERICAL VALUES OF DATA IN FIGURE SUPPLIED BY A. YOKOSAWA.


Angular dependence of the p p elastic scattering spin correlation parameter A(00nn) between 0.8 and 2.8 GeV: Results for 1.80-GeV to 2.24-GeV

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Phys.Rev.C 62 (2000) 064001, 2000.
Inspire Record 539075 DOI 10.17182/hepdata.25464

Measurements at 19 beam kinetic energies between 1795 and 2235 MeV are reported for the pp elastic scattering spin correlation parameter A00nn=ANN=CNN. The c.m. angular range is typically 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters. These results are compared to previous data from Saturne II and elsewhere.

21 data tables match query

Measured values of CNN at EKIN 1795 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.110.

Measured values of CNN at EKIN 1845 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.073.

Measured values of CNN at EKIN 1935 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.095.

More…