pi+- p differential cross sections at low energies.

Denz, H. ; Amaudruz, P. ; Brack, J.T. ; et al.
Phys.Lett.B 633 (2006) 209-213, 2006.
Inspire Record 699647 DOI 10.17182/hepdata.31620

Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.

12 data tables match query

Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.

More…

The Differential Cross-section for Proton Proton Elastic Scattering at 90-degrees $c$.m. Between 300-{MeV} and 500-{MeV}

Ottewell, D. ; Walden, P. ; Auld, E.G. ; et al.
Nucl.Phys.A 412 (1984) 189-194, 1984.
Inspire Record 191877 DOI 10.17182/hepdata.37041

The absolute differential cross section for proton-proton elastic scattering has been measured at 90° c.m. for 300, 350, 400, 450 and 500 MeV. The statistical uncertainty of the measurements is 0.5% with an additional systematic normalization uncertainty of 1.8%. The results are compared to phase-shift analyses.

1 data table match query

The statistical and systematic errors are added in quadrature.


Precision pion proton elastic differential cross sections at energies spanning the Delta resonance.

Pavan, M.M. ; Brack, J.T. ; Duncan, F. ; et al.
Phys.Rev.C 64 (2001) 064611, 2001.
Inspire Record 554203 DOI 10.17182/hepdata.31782

A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.

18 data tables match query

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and single arm pion detection. There is an additional systematic error of 1.1 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT (1.6 PCT) for PI+ (PI-) beams which is not included in the errors shown in the table.

More…

Forward angle pi+- p elastic scattering differential cross-sections at T(pi) = 87-MeV to 139-MeV

Brack, J.T. ; Amaudruz, P.A. ; Ottewell, D.F. ; et al.
Phys.Rev.C 51 (1995) 929-936, 1995.
Inspire Record 400646 DOI 10.17182/hepdata.25894

Absolute π±p elastic scattering differential cross sections have been measured at five incident pion energies between 87 and 139 MeV. An active target of scintillator material (CH1.1) was used to detect recoil protons in coincidence with scattered pions. Pions were detected at forward angles between 27 and 98°c.m. where the low-energy recoil protons stop in the target. The cross sections, typically 5–10% lower than phase shift predictions for π+p and 10–20% lower for the π−p cross sections, are consistent with earlier measurements by this group.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Elastic Differential Cross Sections for pi + /- + p Scattering from 2.3-6.0 BeVc

Coffin, C.T. ; Dikmen, N. ; Ettlinger, L. ; et al.
Phys.Rev. 159 (1967) 1169-1175, 1967.
Inspire Record 52242 DOI 10.17182/hepdata.26578

Elastic differential cross sections were measured at 6 energies between 2.3 and 6 BeVc for π++p and π−+p. The behavior of the secondary peak as a function of energy and charge is shown. Evidence for considerable resonance structure is seen in the angular distributions.

1 data table match query

No description provided.


K-minus-p interactions from 594 to 820 mev/c

Bertanza, L. ; Bigi, A. ; Carrara, R. ; et al.
Phys.Rev. 177 (1969) 2036-2047, 1969.
Inspire Record 55654 DOI 10.17182/hepdata.70773

K−−p interactions in the Columbia-BNL 30-in. hydrogen bubble chamber were studied at nine momenta from 594 to 820 MeVc. The results for elastic-scattering and zero-prong-plus-V0 events are presented here. Differential cross sections are given for the K−p, K¯0n, and Λπ0 final states. A fit to the K¯N channels was obtained which shows the effects of a 32− resonance at 1701 MeV. This energy is appreciably displaced from the peak in the inelastic cross section.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Search for Narrow Baryons in $\pi^- p$ Elastic Scattering at Large Angles

The CERN-College de France-Ecole Poly collaboration Baillon, P. ; Barrelet, E. ; Benayoun, Maurice ; et al.
Phys.Lett.B 94 (1980) 533-540, 1980.
Inspire Record 153784 DOI 10.17182/hepdata.27177

Hoping to find resonant structures in the momentum dependence of π − p elastic scattering we have measured the differential cross section for this reaction at c.m. angles near 90°. An intense pion beam (≈ 10 7 π /s) has been used, together with a high incident momentum resolution (d P / P ≈ 2 × 10 −4 ), to scan the region of laboratory momenta from 5.75 to 13.02 GeV/ c (c.m. energy from 3.42 to 5.03 GeV). The sensitivity attained by the experiment is such that signals would have been seen corresponding to the formation of non-strange baryon resonances having width larger than ≈ 0.1 MeV and elasticity larger than a few per cent. Within these limits no resonances were sighted.

1 data table match query

ENERGY SCAN IN BINS OF D(PLAB)/PLAB OF 5*10**-4 AT FOUR FIXED ANGLES (COS(THETA) = -0.4 TO 0.4).


K--p and K--n Cross Sections in the Momentum Range 1-4 Bev/c

Cook, V. ; Cork, Bruce ; Hoang, T.F. ; et al.
Phys.Rev. 123 (1961) 320-332, 1961.
Inspire Record 46822 DOI 10.17182/hepdata.26808

The energy dependence of the K−-nucleon total cross sections has been measured over the K− momentum range 0.98-3.98 Bev/c. K−−n cross sections were obtained by deuterium-hydrogen subtraction, with a correction for screening effects. There is evidence for structure in the T=0 K−-nucleon state in the momentum range 0.98-2.0 Bev/c. This structure is absent in the T=1 state. In addition, a measurement was made at 1.95 Bev/c of the angular distribution of the K−−p elastic scattering at small angles. The forward-scattering amplitude obtained from the data gives a ratio of real part to imaginary part 0.5±0.2 at 00. The corresponding ratio for π− mesons at this momentum was found to be 0.4−0.4+0.2. Measurements of the K−−p "elastic" charge exchange gives a cross section which falls from about 10 mb at 1 Bev/c to at most a few mb at 4 Bev/c.

1 data table match query

No description provided.


Pi- p ELASTIC SCATTERING IN THE CMS ENERGY RANGE 1400-MeV TO 2000-MeV

Brody, A.D. ; Cashmore, R.J. ; Kernan, A. ; et al.
Phys.Rev.D 3 (1971) 2619, 1971.
Inspire Record 60976 DOI 10.17182/hepdata.4110

Total and differential cross sections for π−p elastic scattering are presented at 35 energies between 1400 and 2000 MeV.

70 data tables match query

No description provided.

No description provided.

No description provided.

More…

Pi+- proton elastic scattering at 180 degrees from 0.60 to 1.60 gev/c

Rothschild, R.E. ; Bowen, T. ; Caldwell, P.K. ; et al.
Phys.Rev.D 5 (1972) 499-505, 1972.
Inspire Record 74554 DOI 10.17182/hepdata.3523

The differential cross section for π±−p elastic scattering at 180° was measured from 0.572 to 1.628 GeVc using a double-arm scintillation-counter spectrometer with an angular acceptance θ* in the center-of-mass system defined by −1.00≤cosθ*≤−0.9992. The π+−p cross section exhibits a large dip at 0.737 GeVc and a broad peak centered near 1.31 GeVc. The π−−p cross section exhibits peaks at 0.69, 0.97, and 1.43 GeVc.

88 data tables match query

No description provided.

No description provided.

No description provided.

More…