Cross-Sections and Charged Multiplicity Distributions for $\pi^- p$ and $K^- p$ Interactions at 147 GeV/c.

Fong, D. ; Heller, M. ; Shapiro, A.M. ; et al.
Nucl.Phys.B 102 (1976) 386-404, 1976.
Inspire Record 112604 DOI 10.17182/hepdata.36057

The results presented in this paper were obtained from a 105 000 frame exposure of the FNAL Hybrid Proportional Wire Chamber-30 inch Bubble Chamber System, in a tagged beam of 147 GeV/ c negative particles. Elastic, total and topological cross sections were obtained for both π − p and K − p interactions. Comparisons with other data, taken with various beam particles over large momentum intervals, show good agreement with KNO scaling, and similarity in the scaling behavior of σ n for the different beam particles.

3 data tables match query

THESE CROSS SECTIONS ARE NOT NORMALIZED TO ANY OTHER ABSOLUTE MEASUREMENT. THE ERRORS INCLUDE SOME SYSTEMATIC ERRORS.

THE FORWARD CROSS SECTION AGREES WELL WITH THE OPTICAL POINT FROM TOTAL CROSS SECTION MEASUREMENTS.

THESE CROSS SECTIONS ARE NOT NORMALIZED TO ANY OTHER ABSOLUTE MEASUREMENT.


Some Two-Body Final States of K-p Interactions at 1.33 GeVc

Trower, W.P. ; Ficenec, J.R. ; Hulsizer, R.I. ; et al.
Phys.Rev. 170 (1968) 1207-1222, 1968.
Inspire Record 944939 DOI 10.17182/hepdata.26507

We studied 21 187 two-prong, two-prong-with-kink, and zero-prong-V events at incident kaon momentum of 1.33 GeVc using the 72-in. hydrogen bubble chamber at the Lawrence Radiation Laboratory and two scanning and measuring projectors in Urbana. We determined the total and partial cross sections for all contributing reactions. For the two-body final states, some production and polarization angular distributions were measured. The angular distributions are discussed in terms of exchanges in the kinematical channels s, t, and u assuming the simplest Feynman graphs. Elastic scattering is analyzed as a diffraction process.

1 data table match query

No description provided.


Channel cross-sections of k- p reactions from 1.26 to 1.84 gev/c

de Bellefon, A. ; Berthon, A. ; Rangan, L.K. ; et al.
Nuovo Cim.A 7 (1972) 567-583, 1972.
Inspire Record 78277 DOI 10.17182/hepdata.37482

We present the results on total channel cross-sections obtained in the Saclay 180 l HBC exposed to a separated K− beam at Nimrod. The cross-sections for each channel are given at 13 incident K− momenta between 1.26 and 1.84 GeV/c.

1 data table match query

No description provided.


Elastic, Charge Exchange, and Total K- p Cross-Sections in the Momentum Range 220-MeV/c to 470-MeV/c

Mast, Terry S. ; Alston-Garnjost, Margaret ; Bangerter, Roger O. ; et al.
Phys.Rev.D 14 (1976) 13, 1976.
Inspire Record 100579 DOI 10.17182/hepdata.24699

An analysis has been made of 64 600 events of the type K−p→K−p and 22 800 events of the type K−p→K¯0n in the Berkeley 25-in. hydrogen bubble chamber. Differential cross sections have been measured in intervals of 10 MeV/c over the momentum range 220 to 470 MeV/c. Legendre-polynomial fits to the distributions have been made, and the coefficients show structure from the resonant D-wave [Λ(1520)] and background S and P waves. No new structure is observed. The total K−p cross section determined from measurements of all final states seen in this exposure is also presented.

3 data tables match query

No description provided.

CUT ON UPPER VALUE OF COS(THETA) RANGES FROM 0.77 TO 0.93.

No description provided.


Real Part of the K+- p Forward Scattering Amplitude at 4.2-GeV/c, 7-GeV/c and 10-GeV/c

Baillon, P. ; Declais, Y. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 107 (1976) 189-210, 1976.
Inspire Record 108434 DOI 10.17182/hepdata.35862

The differential cross section of K − p and K + p elastic scattering has been measured at 4.2, 7 and 10 GeV/ c in the very forward region of scattering angles. The measurements have been made at the CERN PS by means of multiwire proportional chambers and counters. The region of momentum transfers t is 0.001 ⩽ | t | ⩽ 0.10 GeV 2 at the highest momentum and 0.001 ⩽ | t | ⩽ 0.03 GeV 2 at the lowest. Over these regions the Coulomb and the nuclear amplitudes reach their maximum interference. We have used a parametrisation of the above amplitudes to determine the value of the real part of the nuclear forward scattering amplitude. A dispersion relation fit has then been performed using these and earlier measurements; the asymptotic behaviour of the K ± p real parts has been examined in the light of this fit.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…