The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3 fb$^{-1}$ of pp collisions at $\sqrt{s}=8$ TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c-quarks. Events containing isolated electrons or muons are vetoed. In an R-parity-conserving minimal supersymmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm-neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded.
$m_{CT}$ distribution in signal region (before $m_{CT}$ cuts).
$m_{cc}$ distribution in the signal region with $m_{CT}>150$ GeV.
95% C.L. expected exclusion contour for all regions combined.
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider (LHC) are reported. The search is based on proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 8$ TeV collected in 2012, corresponding to an integrated luminosity of 20 fb$^{-1}$. No significant excess above the Standard Model expectation is observed. Limits are set on the parameters of a minimal universal extra dimensions model, excluding a compactification radius of $1/R_c=950$ GeV for a cut-off scale times radius ($\Lambda R_c$) of approximately 30, as well as on sparticle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet inclusive signal region. The last bin includes the overflow.
A search for squarks and gluinos in final states containing high-$p_{\rm T}$ jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in $\sqrt{s}=8$ TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of $20.3 \mathrm{fb}^{-1}$. No significant excess above the Standard Model expectation is observed. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with $\tan\beta=30$, $A_0=-2m_0$ and $\mu> 0$, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
The effective mass distribution in 2-jet loose signal region.
The effective mass distribution in 2-jet medium and tight signal regions.
The effective mass distribution in 2-jet (W) signal region.
The results of a search for pair production of light top squarks are presented, using 4.7 fb^-1 of sqrt(s) = 7 TeV proton-proton collisions collected with the ATLAS detector at the Large Hadron Collider. This search targets top squarks with masses similar to, or lighter than, the top quark mass. Final states containing exclusively one or two leptons (e, mu), large missing transverse momentum, light-jets and b-jets are used to reconstruct the top squark pair system. Global mass scale variables are used to separate the signal from a large ttbar background. No excess over the Standard Model expectations is found. The results are interpreted in the framework of the Minimal Supersymmetric Standard Model, assuming the top squark decays exclusively to a chargino and a b-quark. Light top squarks with masses between 123-167 GeV are excluded for neutralino masses around 55 GeV.
Expected 95 PCT exclusion limit in the M(stop), M(neutralino) plane in gaugino universality scenario.
Observed 95 PCT exclusion limit in the M(stop), M(neutralino) plane in gaugino universality scenario.
Expected 95 PCT exclusion limit in the M(chargino), M(neutralino) plane in the scenario where M(stop) = 180 GEV.
Searches for the electroweak production of charginos, neutralinos and sleptons in final states characterized by the presence of two leptons (electrons and muons) and missing transverse momentum are performed using 20.3 fb-1 of proton-proton collision data at sqrt(s) = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. Limits are set on the masses of the lightest chargino, next-to-lightest neutralino and sleptons for different lightest-neutralino mass hypotheses in simplified models. Results are also interpreted in various scenarios of the phenomenological Minimal Supersymmetric Standard Model.
MT2 in WW CR for SR-WWa.
ET(miss,rel) in Top CR for SR-MT2 and SR-WWb/c.
ET(miss,rel) in ZV CR for SR-MT2 and SR-WWb/c.
The production of W bosons in association with two jets in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$=7 TeV has been analysed for the presence of double-parton interactions using data corresponding to an integrated luminosity of 36/pb, collected with the ATLAS detector at the LHC. The fraction of events arising from double-parton interactions, $f_{DP}^{(D)}$ has been measured through the momentum balance between the two jets and amounts to $f_{DP}^{(D)} = 0.08 \pm 0.01 (stat.) \pm 0.02 (sys.)$ for jets with transverse momentum PT > 20 GeV and rapidity |y|<2.8. This corresponds to a measurement of the effective area parameter for hard double-parton interactions of $\sigma_{eff} = 15 \pm 3 (stat.)^{+5}_{-3}$ (sys.) mb.
Distribution of Delta(jets,normalised), defined in Eq. (11) of the paper as the transverse momentum of the dijet system normalised by the sum of the individual transverse momenta, in the data after unfolding to hadron level. The errors on the data represent the quadrature sum of the statistical and systematic uncertainties. Data have been normalised to unity.
Distribution of Delta(jets), defined in Eq. (10) of the paper as the transverse momentum of the dijet system, in the data after unfolding to hadron level. The errors on the data represent the quadrature sum of the statistical and systematic uncertainties. Data have been normalised to unity.
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of $20.1 \rm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm} \rightarrow b W^{\left(\ast\right)} \tilde{\chi}_{1}^{0}$, where $\tilde{\chi}_{1}^{0}$ ($\tilde{\chi}_{1}^{\pm}$) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$. For a branching fraction of 100%, top squark masses in the range 270-645 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 30 GeV. For a branching fraction of 50% to either $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm}$, and assuming the $\tilde{\chi}_{1}^{\pm}$ mass to be twice the $\tilde{\chi}_{1}^{0}$ mass, top squark masses in the range 250-550 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 60 GeV.
Etmiss distribution for SRA1 and SRA2 after all selection requirements except those on Etmiss.
Etmiss distribution for SRA3 and SRA4 after all selection requirements except those on Etmiss.
Etmiss distribution for SRB after all selection requirements except those on Etmiss.
Results of a search for supersymmetry via direct production of third-generation squarks are reported, using $20.3$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 8$ TeV recorded by the ATLAS experiment at the LHC in 2012. Two different analysis strategies based on monojet-like and $c$-tagged event selections are carried out to optimize the sensitivity for direct top squark pair production in the decay channel to a charm quark and the lightest neutralino ($\tilde{t}_1 \to c + \tilde{\chi}_{1}^{0}$) across the top squark--neutralino mass parameter space. No excess above the Standard Model background expectation is observed. The results are interpreted in the context of direct pair production of top squarks and presented in terms of exclusion limits in the ($m_{\tilde{t}_1}$, $m_{\tilde{\chi}_{1}^{0}}$) parameter space. A top squark of mass up to about 240 GeV is excluded at 95$\%$ confidence level for arbitrary neutralino masses, within the kinematic boundaries. Top squark masses up to 270 GeV are excluded for a neutralino mass of 200 GeV. In a scenario where the top squark and the lightest neutralino are nearly degenerate in mass, top squark masses up to 260 GeV are excluded. The results from the monojet-like analysis are also interpreted in terms of compressed scenarios for top squark pair production in the decay channel $\tilde{t}_1 \to b + ff^{'} + \tilde{\chi}^{0}_{1}$ and sbottom pair production with $\tilde{b}_1 \to b + \tilde{\chi}^{0}_{1}$, leading to a similar exclusion for nearly mass-degenerate third-generation squarks and the lightest neutralino. The results in this paper significantly extend previous results at colliders.
Distribution of the discriminator against b-jets, log(Pcharm/Pb), for the first-leading jet. For illustration purposes, the distributions of two different SUSY scenarios for stop pair production with the decay mode $\tilde{t}_1 \rightarrow c + \tilde{\chi}^{0}_1$ are included. In the SUSY signal, the first-leading jet mostly originates from ISR.
Distribution of the discriminator against b-jets, log(Pcharm/Pu), for the third-leading jet. For illustration purposes, the distributions of two different SUSY scenarios for stop pair production with the decay mode $\tilde{t}_1 \rightarrow c + \tilde{\chi}^{0}_1$ are included. In the SUSY signal, the third-leading jet is expected to contain a large fraction of c-jets.
The measured $E_T^{miss}$ distribution in the $W \rightarrow \mu \nu$ control region, for the M1 selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit.
Results are presented from a search for new decaying massive particles whose presence is inferred from an imbalance in transverse momentum and which are produced in association with a single top quark that decays into a bottom quark and two light quarks. The measurement is performed using 19.7 inverse femtobarns of data from proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No deviations from the standard model predictions are observed and lower limits are set on the masses of new invisible bosons. In particular, scalar and vector particles, with masses below 330 and 650 GeV, respectively, are excluded at 95% confidence level, thus substantially extending a previous limit published by the CDF Collaboration.
The invariant mass of the three jets prior to the selection on their mass to be less than 250 GeV, for events with one b-tagged jet. Data are compared to the simulated backgrounds. The expectation from a model for an invisible vector particle with a mass of 700 GeV is represented by the dashed line.
The 95% CL expected and observed CLS limits as functions of the mass of a scalar invisible particle. The expected magnitude of a signal as a function of mass, calculated at leading order, is shown by the dashed curve. The confidence intervals for the expected limit are given at 68% and 95% coverage probability. Information about functional form used for the signal (labeled "scalar signal" in the paper): F = 7.52936*exp(-(0.0070828*(x^1.02681))), where x = M.
The 95% CL expected and observed CLS limits as functions of the mass of a vector invisible particle. The expected magnitude of a signal as a function of mass, calculated at leading order, is shown by the dashed curve. The confidence intervals for the expected limit are given at 68% and 95% coverage probability. Information about functional form used for the signal (labeled "vector signal" in the paper): F = 1390.91*exp(-(0.397971*(x^0.477721))), where x = M.
Results of a search for the electroweak associated production of charginos and next-to-lightest neutralinos, pairs of charginos or pairs of tau sleptons are presented. These processes are characterised by final states with at least two hadronically decaying tau leptons, missing transverse momentum and low jet activity. The analysis is based on an integrated luminosity of 20.3 fb$^{-1}$ of proton--proton collisions at $\sqrt{s}=8$ TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess is observed with respect to the predictions from Standard Model processes. Limits are set at 95% confidence level on the masses of the lighter chargino and next-to-lightest neutralino for various hypotheses for the lightest neutralino mass in simplified models. In the scenario of direct production of chargino pairs, with each chargino decaying into the lightest neutralino via an intermediate tau slepton, chargino masses up to 345 GeV are excluded for a massless lightest neutralino. For associated production of mass-degenerate charginos and next-to-lightest neutralinos, both decaying into the lightest neutralino via an intermediate tau slepton, masses up to 410 GeV are excluded for a massless lightest neutralino.
The stransverse mass distribution in the multi-jet CR-C1N2.
Mt(tau1)+Mt(tau2) distribution in the multi-jet CR C1C1.
Effective mass distribution in the multi-jet CR DS-highMass.