Deep inelastic cross-section measurements at large y with the ZEUS detector at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev.D 90 (2014) 072002, 2014.
Inspire Record 1292476 DOI 10.17182/hepdata.64778

The reduced cross sections for $e^{+}p$ deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, $318$, $251$ and $225$ GeV. The cross sections, measured double differentially in Bjorken $x$ and the virtuality, $Q^2$, were obtained in the region $0.13\ \leq\ y\ \leq\ 0.75$, where $y$ denotes the inelasticity and $5\ \leq\ Q^2\ \leq\ 110$ GeV$^2$. The proton structure functions $F_2$ and $F_L$ were extracted from the measured cross sections.

63 data tables match query

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=7 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=9 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=12 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

More…

Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 61 (2009) 223-235, 2009.
Inspire Record 810120 DOI 10.17182/hepdata.51622

Measurements of the cross sections for charged current deep inelastic scattering in e-p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb-1 collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections dsigma/dQ2, dsigma/dx and dsigma/dy are presented for Q2>200 GeV2. The double-differential cross-section d2sigma/dxdQ2 is presented in the kinematic range 280<Q2<30000 GeV2 and 0.015<x<0.65. The measured cross sections are compared with the predictions of the Standard Model.

6 data tables match query

Values of the differential cross section DSIG/DQ**2 with detailed statistical and systematic errors.. The first DSYS is the uncorrelated systematic error and the second is the calorimeter energy scale uncertainty which has significant correlation between cross section bins.

Values of the differential cross section DSIG/DX with detailed statistical and systematic errors.. The first DSYS is the uncorrelated systematic error and the second is the calorimeter energy scale uncertainty which has significant correlation between cross section bins.

Values of the differential cross section DSIG/DY with detailed statistical and systematic errors.. The first DSYS is the uncorrelated systematic error and the second is the calorimeter energy scale uncertainty which has significant correlation between cross section bins.

More…

Measurement of isolated photons accompanied by jets in deep inelastic ep scattering

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Lett.B 715 (2012) 88-97, 2012.
Inspire Record 1117891 DOI 10.17182/hepdata.60574

The production of isolated high-energy photons accompanied by jets has been measured in deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 326 pb^{-1}. Measurements were made for exchanged photon virtualities, Q^2, in the range 10 to 350 GeV^2. The photons were measured in the transverse-energy and pseudorapidity ranges 4 < ET^gamma < 15 GeV and -0.7 < eta^gamma < 0.9, and the jets were measured in the transverse-energy and pseudorapidity ranges 2.5 < ET^jet <35 GeV and -1.5 < eta^jet < 1.8. Differential cross sections are presented as functions of these quantities. Perturbative QCD predictions give a reasonable description of the shape of the measured cross sections over most of the kinematic range, but the absolute normalisation is typically in disagreement by 20-30%.

2 data tables match query

The measured differential cross section as a function of the transverse energy of the photon.

The measured differential cross section as a function of the transverse energy of the jet.


Measurement of high-Q2 neutral current deep inelastic e+p scattering cross sections with a longitudinally polarised positron beam at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev.D 87 (2013) 052014, 2013.
Inspire Record 1183813 DOI 10.17182/hepdata.62614

Measurements of neutral current cross sections for deep inelastic scattering in e+p collisions at HERA with a longitudinally polarised positron beam are presented. The single-differential cross-sections d(sigma)/dQ2, d(sigma)/dx and d(sigma)/dy and the reduced cross-section were measured in the kinematic region Q2 > 185 GeV2 and y < 0.9, where Q2 is the four-momentum transfer squared, x the Bjorken scaling variable, and y the inelasticity of the interaction. The measurements were performed separately for positively and negatively polarised positron beams. The measurements are based on an integrated luminosity of 135.5 pb-1 collected with the ZEUS detector in 2006 and 2007 at a centre-of-mass energy of 318 GeV. The structure functions F3 and F3(gamma)Z were determined by combining the e+p results presented in this paper with previously published e-p neutral current results. The asymmetry parameter A+ is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.

1 data table match query

The structure function xF3 at Q^2=1500, 2000 and 3000 GeV^2 extracted using this data at Pe=0 and previously published NC E-P DIS data.


Measurement of $ D^{*\pm}$ production in deep inelastic scattering at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 05 (2013) 097, 2013.
Inspire Record 1225526 DOI 10.17182/hepdata.62363

The production of $D^{*\pm}$ mesons in deep inelastic $ep$ scattering has been measured for exchanged photon virtualities $ 5<Q^2<1000 \gev^2 $, using an integrated luminosity of 363 pb$^{-1}$ with the ZEUS detector at HERA. Differential cross sections have been measured and compared to next-to-leading-order QCD calculations. The cross-sections are used to extract the charm contribution to the proton structure functions, expressed in terms of the reduced charm cross section, $\sigma_{\rm red}^{c\bar{c}}$. Theoretical calculations based on fits to inclusive HERA data are compared to the results.

1 data table match query

Reduced cross section as a function of X for Q^2 = 350 GeV^2.


Inclusive-jet photoproduction at HERA and determination of alphas

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Nucl.Phys.B 864 (2012) 1-37, 2012.
Inspire Record 1116258 DOI 10.17182/hepdata.62400

Inclusive-jet cross sections have been measured in the reaction ep->e+jet+X for photon virtuality Q2 < 1 GeV2 and gamma-p centre-of-mass energies in the region 142 < W(gamma-p) < 293 GeV with the ZEUS detector at HERA using an integrated luminosity of 300 pb-1. Jets were identified using the kT, anti-kT or SIScone jet algorithms in the laboratory frame. Single-differential cross sections are presented as functions of the jet transverse energy, ETjet, and pseudorapidity, etajet, for jets with ETjet > 17 GeV and -1 < etajet < 2.5. In addition, measurements of double-differential inclusive-jet cross sections are presented as functions of ETjet in different regions of etajet. Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low ETjet and high etajet. The influence of non-perturbative effects not related to hadronisation was studied. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O(alphas2) terms. Values of alphas(Mz) were extracted from the measurements and the energy-scale dependence of the coupling was determined. The value of alphas(Mz) extracted from the measurements based on the kT jet algorithm is alphas(Mz) = 0.1206 +0.0023 -0.0022 (exp.) +0.0042 -0.0035 (th.); the results from the anti-kT and SIScone algorithms are compatible with this value and have a similar precision.

12 data tables match query

The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ET for jet ETARAP -1 TO 2.5 . The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.

The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 17 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.

The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 21 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.

More…

Measurement of dijet photoproduction for events with a leading neutron at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 827 (2010) 1-33, 2010.
Inspire Record 831440 DOI 10.17182/hepdata.62426

Differential cross sections for dijet photoproduction and this process in association with a leading neutron, e+ + p -> e+ + jet + jet + X (+ n), have been measured with the ZEUS detector at HERA using an integrated luminosity of 40 pb-1. The fraction of dijet events with a leading neutron was studied as a function of different jet and event variables. Single- and double-differential cross sections are presented as a function of the longitudinal fraction of the proton momentum carried by the leading neutron, xL, and of its transverse momentum squared, pT**2. The dijet data are compared to inclusive DIS and photoproduction results/ they are all consistent with a simple pion-exchange model. The neutron yield as a function of xL was found to depend only on the fraction of the proton beam energy going into the forward region, independent of the hard process. No firm conclusion can be drawn on the presence of rescattering effects.

2 data tables match query

The differential cross section as a function of jet transverse energy for dijet photon production both without and with a leading neutron, together with their ratio.

The differential cross section as a function of W, the gamma-proton centre-of-mass energy, for dijet photon production both without and with a leading neutron, together with their ratio.


Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 70 (2010) 965-982, 2010.
Inspire Record 875006 DOI 10.17182/hepdata.71338

Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb^-1. The measurement was performed at large values of the photon virtuality, Q^2, between 125 and 20000 GeV^2. The jets were reconstructed with the k_T cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E_T,B^jet, to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M_jj, was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD.

1 data table match query

The measured differential cross-sections $d\sigma/dQ^2$ for inclusive dijet production. The statistical, uncorrelated systematic and jet-energy-scale (ES) uncertainties are shown separately. The multiplicative corrections, ${C_{\rm{QED}}}$, which have been applied to the data and the corrections for hadronisation and ${Z^{0}}$ effects to be applied to the parton-level NLO QCD calculations, ${C_{\rm{hadr}}\cdot C_{\rm{Z^{0}}}}$, are shown in the last two columns.


Dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 348 (1995) 665-680, 1995.
Inspire Record 392980 DOI 10.17182/hepdata.44999

Dijet production by almost real photons has been studied at HERA with the ZEUS detector. Jets have been identified using the cone algorithm. A cut on xg, the fraction of the photon energy participating in the production of the two jets of highest transverse energy, is used to define cross sections sensitive to the parton distributions in the proton and in the photon. The dependence of the dijet cross sections on pseudorapidity has been measured for xg $\ge 0.75$ and xg $< 0.75$. The former is sensitive to the gluon momentum density in the proton. The latter is sensitive to the gluon in the photon. The cross sections are corrected for detector acceptance and compared to leading order QCD calculations.

2 data tables match query

Direct photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.

Resolved photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.


Study of the photon remnant in resolved photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 354 (1995) 163-177, 1995.
Inspire Record 392038 DOI 10.17182/hepdata.44946

Photoproduction at HERA is studied in $ep$ collisions, with the ZEUS detector, for $\gamma p$ centre-of-mass energies ranging from 130-270 GeV. A sample of events with two high-$p_T$ jets ($p_T > 6$ GeV, $\eta <1.6$) and a third cluster in the approximate direction of the electron beam is isolated using a clustering algorithm. These events are mostly due to resolved photoproduction. The third cluster is identified as the photon remnant. Its properties, such as the transverse and longitudinal energy flows around the axis of the cluster, are consistent with those commonly attributed to jets, and in particular with those found for the two jets in these events. The mean value of the photon remnant $p_T$ with respect to the beam axis is measured to be $2.1 \pm 0.2$ GeV, which demonstrates substantial mean transverse momenta for the photon remnant.

1 data table match query

Corrected Energy distribution of the third cluster corrected to the hadron level.


Exclusive electroproduction of rho0 and J / psi mesons at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 6 (1999) 603-627, 1999.
Inspire Record 475083 DOI 10.17182/hepdata.44217

Exclusive production of $\rho^0$ and $J/\psi$ mesons in e^+ p collisions has been studied with the ZEUS detector in the kinematic range $0.25 < Q^2 < 50 GeV^2, 20 < W < 167 GeV$ for the $\rho^0$ data and $2 < Q^2 < 40 GeV^2, 50 < W < 150 GeV$ for the $J/\psi$ data. Cross sections for exclusive $\rho^0$ and $J/\psi$ production have been measured as a function of $Q^2, W$ and $t$. The spin-density matrix elements $r^{04}_{00}, r^1_{1-1}$ and $Re r^{5}_{10}$ have been determined for exclusive $\rho^0$ production as well as $r^{04}_{00}$ and $r^{04}_{1-1}$ for exclusive $J/\psi$ production. The results are discussed in the context of theoretical models invoking soft and hard phenomena.

1 data table match query

The spin-density martix elements deletermined for various values of W and Q**2 for the RHO0 BPC sample.


Diffractive dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 5 (1998) 41-56, 1998.
Inspire Record 469534 DOI 10.17182/hepdata.44302

Differential dijet cross sections have been measured with the ZEUS detector for photoproduction events in which the hadronic final state containing the jets is separated with respect to the outgoing proton direction by a large rapidity gap. The cross section has been measured as a function of the fraction of the photon (x_gamma^OBS) and pomeron (beta^OBS) momentum participating in the production of the dijet system. The observed x_gamma^OBS dependence shows evidence for the presence of a resolved- as well as a direct-photon component. The measured cross section d(sigma)/d(beta^OBS) increases as beta^OBS increases indicating that there is a sizeable contribution to dijet production from those events in which a large fraction of the pomeron momentum participates in the hard scattering. These cross sections and the ZEUS measurements of the diffractive structure function can be described by calculations based on parton densities in the pomeron which evolve according to the QCD evolution equations and include a substantial hard momentum component of gluons in the pomeron.

3 data tables match query

Differential cross section as a function of transverse energy Et of the tw o highest Et jets in event.

Differential cross section as a function of X_gamma=(ET(JET1)*EXP(-ETARAP( JET1)) + ET(JET2)*EXP(-ETARAP(JET2)))/ (2*Y*E), the fraction of the photon momentum carried by the highest E_t jets. E is the incident positron energy.

Differential cross section as a function of BETA = (ET(JET1)*EXP(-ETARAP(J ET1)) + ET(JET2)*EXP(-ETARAP(JET2)))/ (2*XPOMERON*E_p), the fraction of the photon momentum carried by the highest E_t jets. E_p is the incident proton energy.


Charged particles and neutral kaons in photoproduced jets at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 2 (1998) 77-93, 1998.
Inspire Record 451528 DOI 10.17182/hepdata.44362

Charged particles ($h^\pm$) and \kz mesons have been studied in photoproduced events containing at least one jet of $E_T > 8$ GeV in a pseudorapidity interval (--0.5, 0.5) in the ZEUS laboratory frame. Distributions are presented in terms of transverse momentum, pseudorapidity and distance of the particle from the axis of a jet. The properties of \hpm within the jet are described well using the standard settings of PYTHIA, but the use of the multiparton interaction option improves the description outside the jets. A reasonable overall description of the \kz behaviour is possible with PYTHIA using a reduced value of the strangeness suppression parameter. The numbers of $h^\pm$ and \kz within a jet as defined above are measured to be $3.25\pm0.02\pm0.28$ and $0.431\pm0.013\pm0.088$ respectively. Fragmentation functions are presented for $h^\pm$ and \kz in photoproduced jets; agreement is found with calculations of Binnewies et al. and, at higher momenta, with $p\bar p$ scattering and with standard PYTHIA. Fragmentation functions in direct photoproduced events are extracted, and at higher momenta give good agreement with data from related processes in $e^+e^-$ annihilation and deep inelastic $ep$ scattering.

2 data tables match query

Fragmentation function for charged particles from direct enhanced events two jet and corrected to 'pure direct' values. The selection involves a cut on the parameter X(C=GAMMA_OBS) which effectively is the fraction of the photon momentum going into two production of the two jets. In addition to the normal cuts, for this data both jets are required to have a minimum energy of 7 GeV and the rapidity of the second jet less that 2.5.

Fragmentation function for K0 mesons from direct enhanced events two jet and corrected to 'pure direct' values. The selection involves a cut on the parameter X(C=GAMMA_OBS) which effectively is the fraction of the photon momentum going into two production of the two jets.In addition to the normal cuts, for this data both jets are required to have a minimum energy of 7 GeV and the rapidity of the second jet less that 2.5.


Measurement of jet shapes in high Q**2 deep inelastic scattering at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 8 (1999) 367-380, 1999.
Inspire Record 468803 DOI 10.17182/hepdata.44312

The shapes of jets with transverse energies, E_T(jet), up to 45 GeV produced in neutral- and charged-current deep inelastic e+p scattering (DIS) at Q**2 > 100 GeV**2 have been measured with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the eta-phi plane with a cone radius of one unit. The jets become narrower as E_T(jet) increases. The jet shapes in neutral- and charged-current DIS are found to be very similar. The jets in neutral-current DIS are narrower than those in resolved processes in photoproduction and closer to those in direct-photon processes for the same ranges in E_T(jet) and jet pseudorapidity. The jet shapes in DIS are observed to be similar to those in e+e- interactions and narrower than those in pbarp collisions for comparable E_T(jet). Since the jets in e+e- interactions and e+p DIS are predominantly quark initiated in both cases, the similarity in the jet shapes indicates that the pattern of QCD radiation within a quark jet is to a large extent independent of the hard scattering process in these reactions.

1 data table match query

Comparison of the differential jet shape with those from E+E- interactions obtained in a comparable data from OPAL (Alees et al. ZP C63 (94) 197).


Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 67-83, 1999.
Inspire Record 472962 DOI 10.17182/hepdata.44219

Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.

2 data tables match query

Differential cross section for two jet production with associated D* production, from channel (1). The quoted cross sections correspond to the centres of the bins. The second systematic error is that associated with the energy scale.

Differential cross section for two jet production with associated D* production, from channel (1). The quoted cross sections correspond to the centres of the bins. The second systematic error is that associated with the energy scale.


Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 43-66, 1999.
Inspire Record 473108 DOI 10.17182/hepdata.44224

The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.

1 data table match query

Diffractive structure function F2(D3).


Dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 109-122, 1998.
Inspire Record 450085 DOI 10.17182/hepdata.44384

Dijet cross sections are presented using photoproduction data obtained with the ZEUS detector during 1994. These measurements represent an extension of previous results, as the higher statistics allow cross sections to be measured at higher jet transverse energy (ETJ). Jets are identified in the hadronic final state using three different algorithms, and the cross sections compared to complete next-to-leading order QCD calculations. Agreement with these calculations is seen for the pseudorapidity dependence of the direct photon events with ETJ > 6 GeV and of the resolved photon events with ETJ > 11 GeV. Calculated cross sections for resolved photon processes with 6 GeV < ETJ < 11 GeV lie below the data.

1 data table match query

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 8 GeV and a requirement on X(NAME=GAMMA_OBS) to be > 0.75. The second DSYS errors are the correlated uncertainties.


Measurement of D*+- production and the charm contribution to F2 in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 35-52, 2000.
Inspire Record 505056 DOI 10.17182/hepdata.43895

The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1<Q^2<600 GeV^2 and 0.02<y<0.7 is 8.31 +- 0.31(stat.) +0.30-0.50(syst.) nb in the kinematic region 1.5< pT(D*+-)<15 GeV and |eta(D*+-)|<1.5. Differential cross sections are consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the range 10^-4 to 10-3.

2 data tables match query

The differential cross section w.r.t. W the virtual photon centre of mass energy from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

The charmed structure function F2(C=CHARM) derived from a combination of the K2PI and K4PI data. There are additional systematic uncertainties described in the text of the paper which include the 1.65 PCT luminosity uncertainty and a 9 PCT uncertainty in the charm hadronization fraction to D*+-.


Measurement of the E(T,jet)**2/Q**2 dependence of forward-jet production at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 474 (2000) 223-233, 2000.
Inspire Record 508906 DOI 10.17182/hepdata.43875

The forward-jet cross section in deep inelastic ep scattering has been measured using the ZEUS detector at HERA with an integrated luminosity of 6.36 pb^-1. The jet cross section is presented as a function of jet transverse energy squared, E(T,jet)^2, and Q^2 in the kinematic ranges 10^-2<E(T,jet)^2/Q^2<10^2 and 2.5 10^-4<x<8.0 10^-2. Since the perturbative QCD predictions for this cross section are sensitive to the treatment of the log(E_T/Q)^2 terms, this measurement provides an important test. The measured cross section is compared to the predictions of a next-to-leading order pQCD calculation as well as to various leading-order Monte Carlo models. Whereas the predictions of all models agree with the measured cross section in the region of small E(T,Jet)^2/Q^2, only one model, which includes a resolved photon component, describes the data over the whole kinematic range.

1 data table match query

Forward jet cross section as a function of ET**2/Q**2. The second DSYS error is the uncertainty in the energy scale of the calorimeter.


Measurement of inclusive prompt photon photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 472 (2000) 175-188, 2000.
Inspire Record 508908 DOI 10.17182/hepdata.43894

First inclusive measurements of isolated prompt photons in photoproduction at the HERA ep collider have been made with the ZEUS detector, using an integrated luminosity of 38.4 pb$^{-1}$. Cross sections are given as a function of the pseudorapidity and the transverse energy ($\eta^\gamma$, \eTg) of the photon, for $\eTg > $ 5 GeV in the $\gamma p$ centre-of-mass energy range 134-285 GeV. Comparisons are made with predictions from Monte Carlo models having leading-logarithm parton showers, and with next-to-leading-order QCD calculations, using currently available parameterisations of the photon structure. For forward $\eta^\gamma$ (proton direction) good agreement is found, but in the rear direction all predictions fall below the data.

1 data table match query

Differential cross sections as a function pseudorapidity for the inclusive photoproduction of isolated photons with transverse energy from 5 to 10 GeV.


Measurement of Dijet photoproduction at high transverse energies at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 11 (1999) 35-50, 1999.
Inspire Record 500491 DOI 10.17182/hepdata.43992

The cross section for dijet photoproduction at high transverse energies is presented as a function of the transverse energies and the pseudorapidities of the jets. The measurement is performed using a sample of ep-interactions corresponding to an integrated luminosity of 6.3 pb^(-1), recorded by the ZEUS detector.Jets are defined by applying a k_T-clustering algorithm to the hadrons observed in the final state. The measured cross sections are compared to next-to-leading order QCD calculations. In a kinematic regime where theoretical uncertainties are expected to be small, the measured cross sections are higher than these calculations.

1 data table match query

The dijet cross section for the x(gamma)>0.75 range as a function of the pseudorapidity of the jet with the other jet fixed. This data is for a restricted range of y, (W = 212 to 277 GeV).


Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 713 (2005) 3-80, 2005.
Inspire Record 675372 DOI 10.17182/hepdata.11816

Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.

1 data table match query

Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 3.0 GeV and Q**2 = 2.7 GeV**2.


Event shapes in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 767 (2007) 1-28, 2007.
Inspire Record 714503 DOI 10.17182/hepdata.11818

Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated {luminosity} of 82.2 pb$^{-1}$ collected with the ZEUS detector at HERA. The kinematic range was $80 &lt; Q^2 &lt; 20 480\gev^2$ and $0.0024 &lt; x &lt; 0.6$, where $Q^2$ is the virtuality of the exchanged boson and $x$ is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of $\alpha_s$ and of the non-perturbative parameter of the model, $\albar$, suggests the importance of higher-order processes that are not yet included in the model.

1 data table match query

Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.


Measurement of the F2 structure function in deep inelastic e+ p scattering using 1994 data from the ZEUS detector at HERA.

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 72 (1996) 399-424, 1996.
Inspire Record 420332 DOI 10.17182/hepdata.11638

We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.

1 data table match query

No description provided.


Deep inelastic inclusive and diffractive scattering at $Q^2$ values from 25 to 320 GeV$^2$ with the ZEUS forward plug calorimeter

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 800 (2008) 1-76, 2008.
Inspire Record 779854 DOI 10.17182/hepdata.11639

Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.

1 data table match query

Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 55 GeV**2.