Systematic Study of Azimuthal Anisotropy in Cu$+$Cu and Au$+$Au Collisions at $\sqrt{s_{_{NN}}} = 62.4$ and 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 92 (2015) 034913, 2015.
Inspire Record 1332240 DOI 10.17182/hepdata.150018

We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ and centrality in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV and 62.4 GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{\rm part}$. We observe that $v_2$ divided by eccentricity ($\varepsilon$) monotonically increases with $N_{\rm part}$ and scales as ${N_{\rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as a function of transverse kinetic energy $KE_T=m_T-m$ between $0.1<KE_T/n_q<1$ GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu$+$Cu data at 62.4 GeV, of $v_2/(n_q\cdot\varepsilon\cdot N^{1/3}_{\rm part})$ vs $KE_T/n_q$ for all measured particles.

1 data table match query

$v_2$ vs. $p_T$ and $v_2$/($\epsilon * N^{1/3}_{part} * n_q$) vs. ${KE}_T$/$n_q$ for $\pi$/$K$/$p$ in Au+Au at 200 GeV, in Au+Au at 62.4 GeV, and in Cu+Cu at 200 GeV. The values of $v_2$ and $p_T$ in Au+Au at 200 GeV, in Au+Au at 62.4 GeV, and in Cu+Cu at 200 GeV are the same for as figure 14, and the values of $v_2$, $n_q$, and $KE_T$ in Au+Au at 200 GeV, in Au+Au at 62.4 GeV, and in Cu+Cu at 200 GeV are the same for as figure 18.


Measurement of higher cumulants of net-charge multiplicity distributions in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 011901, 2016.
Inspire Record 1378005 DOI 10.17182/hepdata.146751

We report the measurement of cumulants ($C_n, n=1\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\eta|<0.35$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \mu/\sigma^2$ and $C_3/C_1 = S\sigma^3/\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.

2 data tables match query

The energy dependence of efficiency corrected $\mu / \sigma^2$, $S \sigma$, $\kappa \sigma^2$, and $S \sigma^3 / \mu$ of netcharge distributions for central (0%–5%) Au+Au collisions.

The energy dependence of the chemical freeze-out parameter $\mu_B$.


Trends in Yield and Azimuthal Shape Modification in Dihadron Correlations in Relativistic Heavy Ion Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 252301, 2010.
Inspire Record 845169 DOI 10.17182/hepdata.146557

Fast parton probes produced by hard scattering and embedded within collisions of large nuclei have shown that partons suffer large energy loss and that the produced medium may respond collectively to the lost energy. We present measurements of neutral pion trigger particles at transverse momenta p^t_T = 4-12 GeV/c and associated charged hadrons (p^a_T = 0.5-7 GeV/c) as a function of relative azimuthal angle Delta Phi at midrapidity in Au+Au and p+p collisions at sqrt(s_NN) = 200 GeV. These data lead to two major observations. First, the relative angular distribution of low momentum hadrons, whose shape modification has been interpreted as a medium response to parton energy loss, is found to be modified only for p^t_T &lt; 7 GeV/c. At higher p^t_T, the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p^a_T. This observation presents a quantitative challenge to medium response scenarios. Second, the associated yield of hadrons opposite to the trigger particle in Au+Au relative to that in p+p (I_AA) is found to be suppressed at large momentum (IAA ~ 0.35-0.5), but less than the single particle nuclear modification factor (R_AA ~0.2).

16 data tables match query

Average away-side $I^{head}_{AA}$ above 2 GeV/$c$ for various $\pi^0$ trigger momenta in central and midcentral collisions where $|\Delta\phi - \pi| < \pi/6$. Note: a 6% scale uncertainty applies to all $I_{AA}$ values.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in $p+p$ collisions.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in Au+Au collisions.

More…

Observation of direct-photon collective flow in sqrt(s_NN)=200 GeV Au+Au collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 109 (2012) 122302, 2012.
Inspire Record 900818 DOI 10.17182/hepdata.144510

The second Fourier component v_2 of the azimuthal anisotropy with respect to the reaction plane was measured for direct photons at midrapidity and transverse momentum (p_T) of 1--13 GeV/c in Au+Au collisions at sqr(s_NN)=200 GeV. Previous measurements of this quantity for hadrons with p_T < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p_T > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p_T > 4 GeV/c the anisotropy for direct photons is consistent with zero, as expected if the dominant source of direct photons is initial hard scattering. However, in the p_T < 4 GeV/c region dominated by thermal photons, we find a substantial direct photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region significantly underpredict the observed v_2.

4 data tables match query

$v_2$ in minimum bias collisions, using two different reaction plane detectors: (solid black circles) BBC and (solid red squares) RXN for (a) $\pi^0$, (b) inclusive photon, and (c) direct photon.

Centrality dependence of $v_2$ (a, c, e) for (solid-black circles) $\pi^0$, (solid-red squares) inclusive photons, and (b, d, f) (solid-black circles) direct photons measured with the BBC detector for (a),(b) minimum-bias (c),(d) 0%-20% centrality, and (e),(f) 20%-40% centrality.

Centrality dependence of $v_2$ (a, c, e) for (solid-black circles) $\pi^0$, (solid-red squares) inclusive photons, and (b, d, f) (solid-black circles) direct photons measured with the BBC detector for (a),(b) minimum-bias (c),(d) 0%-20% centrality, and (e),(f) 20%-40% centrality.

More…

Systematic Studies of Elliptic Flow Measurements in Au+Au Collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 80 (2009) 024909, 2009.
Inspire Record 819672 DOI 10.17182/hepdata.143606

We present inclusive charged hadron elliptic flow v_2 measured over the pseudorapidity range |\eta| < 0.35 in Au+Au collisions at sqrt(s_NN) = 200 GeV. Results for v_2 are presented over a broad range of transverse momentum (p_T = 0.2-8.0 GeV/c) and centrality (0-60%). In order to study non-flow effects that are not correlated with the reaction plane, as well as the fluctuations of v_2, we compare two different analysis methods: (1) event plane method from two independent sub-detectors at forward (|\eta| = 3.1-3.9) and beam (|\eta| > 6.5) pseudorapidities and (2) two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p_T and in centrality 0-40%. There is at most 20% difference of the v_2 between the two event plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event plane measurements are discussed.

1 data table match query

Comparison of the $v_2${BBC} and $v_2${ZDC-SMD} obtained from the S-N and ZDC-BBC-CNT subevents as a function of pT in the 20–60% centrality range.


Event-by-event fluctuations in mean p(T) and mean e(T) in s(NN)**(1/2) = 130-GeV Au + Au collisions.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 66 (2002) 024901, 2002.
Inspire Record 584452 DOI 10.17182/hepdata.143150

Distributions of event-by-event fluctuations of the mean transverse momentum and mean transverse energy near mid-rapidity have been measured in Au+Au collisions at sqrt(s_NN) = 130 GeV at RHIC. By comparing the distributions to what is expected for statistically independent particle emission, the magnitude of non-statistical fluctuations in mean transverse momentum is determined to be consistent with zero. Also, no significant non-random fluctuations in mean transverse energy are observed. By constructing a fluctuation model with two event classes that preserve the mean and variance of the semi-inclusive p_T or e_T spectra, we exclude a region of fluctuations in sqrt(s_NN) = 130 GeV Au+Au collisions.

4 data tables match query

The $M_{p_T}$ distributions for four different centrality classes. The curves are the random baseline mixed event distributions.

The residual distribution between the data and mixed event $M_{p_T}$ in units of standard deviations for all centrality classes. The total ${\chi}^2$ and the number of degrees of freedom for the $0-5\%$, $0-10\%$, $10-20\%$, $20-30\%$ centrality classes are 89.0/39, 155.7/40,163.3/47, and 218.4/61, respectively.

The $M_{e_T}$ distributions for four different centrality classes. The curves are the random baseline mixed event distributions. The source of differences in the data and mixed event distributions are addressed in the text.

More…

Direct photon production in d+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 87 (2013) 054907, 2013.
Inspire Record 1126017 DOI 10.17182/hepdata.142660

Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at midrapidity. A wide p_T range is covered by measurements of nearly-real virtual photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield of the direct photons in d+Au collisions over the scaled p+p cross section is consistent with unity. Theoretical calculations assuming standard cold nuclear matter effects describe the data well for the entire p_T range. This indicates that the large enhancement of direct photons observed in Au+Au collisions for 1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear effects.

2 data tables match query

$R_{dA}$ ($d$+Au data/scaled $p+p$ fit). Nuclear modification factor for $d$+Au, $R_{dA}$, as a function of $p_{T}$ . The closed and open symbols show the results from the virtual- and real-photon measurements, respectively. The values in the table are equal to this mean value. The bars and bands represent the point-to-point (ptp.) and $p_{T}$-correlated (cor.) uncertainties, respectively. The box on the right shows the uncertainty of $T_{dA}$ for $d$+Au. The curves indicate the theoretical calculations [24] with different combinations of the CNM effects such as the Cronin enhancement, isospin effect, nuclear shadowing and initial state energy loss.

$R_{dA}$ ($d$+Au data/scaled $p+p$ fit). Nuclear modification factor for $d$+Au, $R_{dA}$, as a function of $p_{T}$ . The closed and open symbols show the results from the virtual- and real-photon measurements, respectively. The values in the table are equal to this mean value. The bars and bands represent the point-to-point (ptp.) and $p_{T}$-correlated (cor.) uncertainties, respectively. The box on the right shows the uncertainty of $T_{dA}$ for $d$+Au. The curves indicate the theoretical calculations [24] with different combinations of the CNM effects such as the Cronin enhancement, isospin effect, nuclear shadowing and initial state energy loss.


Systematic studies of the centrality and s(NN)**(1/2) dependence of dE(T)/d mu and d N(ch)/d mu in heavy ion collisions at mid-rapidity.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 71 (2005) 034908, 2005.
Inspire Record 659749 DOI 10.17182/hepdata.142940

The PHENIX experiment at RHIC has measured transverse energy and charged particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments, and experiments at lower energies. The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured incident energies. At RHIC energies the ratio of transverse energy per charged particle was found independent of centrality and growing slowly with sqrt(s_NN). A survey of comparisons between the data and available theoretical models is also presented.

13 data tables match query

$B$/$A$ ratio from the fit to the data.

$B$/$A$ ratio from the fit to the data.

Parameter $\alpha$ from the fit to the data.

More…

Scaling properties of fractional momentum loss of high-pT hadrons in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$ from 62.4 GeV to 2.76 TeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024911, 2016.
Inspire Record 1394434 DOI 10.17182/hepdata.142336

Measurements of the fractional momentum loss ($S_{\rm loss}\equiv{\delta}p_T/p_T$) of high-transverse-momentum-identified hadrons in heavy ion collisions are presented. Using $\pi^0$ in Au$+$Au and Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb$+$Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of $S_{\rm loss}$ as a function of a number of variables: the number of participants, $N_{\rm part}$, the number of quark participants, $N_{\rm qp}$, the charged-particle density, $dN_{\rm ch}/d\eta$, and the Bjorken energy density times the equilibration time, $\varepsilon_{\rm Bj}\tau_{0}$. We find that the $p_T$ where $S_{\rm loss}$ has its maximum, varies both with centrality and collision energy. Above the maximum, $S_{\rm loss}$ tends to follow a power-law function with all four scaling variables. The data at $\sqrt{s_{_{NN}}}$=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of $S_{\rm loss}$ with $dN_{\rm ch}/d\eta$ and $\varepsilon_{\rm Bj}\tau_{0}$, lending insight on the physics of parton energy loss.

14 data tables match query

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Cu+Cu collisions at RHIC from PHENIX.

More…

System size and energy dependence of jet-induced hadron pair correlation shapes in Cu + Cu and Au + Au collisions at s(NN)**(1/2) = 200-GeV and 62.4-GeV.

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.Lett. 98 (2007) 232302, 2007.
Inspire Record 731669 DOI 10.17182/hepdata.142605

We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

3 data tables match query

Collision centrality, energy, and system size dependence of shape parameters.

Collision centrality, energy, and system size dependence of shape parameters.

Collision centrality, energy, and system size dependence of shape parameters.