Search for narrow and broad dijet resonances in proton-proton collisions at $\sqrt{s}=$ 13 TeV and constraints on dark matter mediators and other new particles

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2018) 130, 2018.
Inspire Record 1676214 DOI 10.17182/hepdata.80166

Searches for resonances decaying into pairs of jets are performed using proton-proton collision data collected at $\sqrt{s} =$ 13 TeV corresponding to an integrated luminosity of up to 36 fb$^{-1}$. A low-mass search, for resonances with masses between 0.6 and 1.6 TeV, is performed based on events with dijets reconstructed at the trigger level from calorimeter information. A high-mass search, for resonances with masses above 1.6 TeV, is performed using dijets reconstructed offline with a particle-flow algorithm. The dijet mass spectrum is well described by a smooth parameterization and no evidence for the production of new particles is observed. Upper limits at 95% confidence level are reported on the production cross section for narrow resonances with masses above 0.6 TeV. In the context of specific models, the limits exclude string resonances with masses below 7.7 TeV, scalar diquarks below 7.2 TeV, axigluons and colorons below 6.1 TeV, excited quarks below 6.0 TeV, color-octet scalars below 3.4 TeV, W' bosons below 3.3 TeV, Z' bosons below 2.7 TeV, Randall-Sundrum gravitons below 1.8 TeV and in the range 1.9 to 2.5 TeV, and dark matter mediators below 2.6 TeV. The limits on both vector and axial-vector mediators, in a simplified model of interactions between quarks and dark matter particles, are presented as functions of dark matter particle mass and coupling to quarks. Searches are also presented for broad resonances, including for the first time spin-1 resonances with intrinsic widths as large as 30% of the resonance mass. The broad resonance search improves and extends the exclusions of a dark matter mediator to larger values of its mass and coupling to quarks.

0 data tables match query

Search for a heavy Higgs boson decaying into a $Z$ boson and another heavy Higgs boson in the $\ell\ell bb$ and $\ell\ell WW$ final states in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 396, 2021.
Inspire Record 1829873 DOI 10.17182/hepdata.95826

A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 139 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC. The search considers the $Z$ boson decaying into electrons or muons and the $H$ boson into a pair of $b$-quarks or $W$ bosons. The mass range considered is 230-800 GeV for the $A$ boson and 130-700 GeV for the $H$ boson. The data are in good agreement with the background predicted by the Standard Model, and therefore 95% confidence-level upper limits for $\sigma \times B(A\rightarrow ZH) \times B(H\rightarrow bb$ or $H\rightarrow WW)$ are set. The upper limits are in the range 0.0062-0.380 pb for the $H\rightarrow bb$ channel and in the range 0.023-8.9 pb for the $H\rightarrow WW$ channel. An interpretation of the results in the context of two-Higgs-Doublet models is also given.

0 data tables match query

Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 829 (2022) 137077, 2022.
Inspire Record 1914582 DOI 10.17182/hepdata.111123

Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and $pp$ collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of $208~\mathrm{\mu b}^{-1}$ and $38~\mathrm{\mu b^{-1}}$, respectively, and $pp$ data with a sampled integrated luminosity of $1.17~\mathrm{pb}^{-1}$ were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in $pp$ collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval $|\eta| < 2$. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays.

0 data tables match query

Leading neutron production in e+ p collisions at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Nucl.Phys.B 637 (2002) 3-56, 2002.
Inspire Record 587158 DOI 10.17182/hepdata.46613

The production of neutrons carrying at least 20% of the proton beam energy ($\xl > 0.2$) in $e^+p$ collisions has been studied with the ZEUS detector at HERA for a wide range of $Q^2$, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, $e p\to e' X n$, is measured relative to the inclusive cross section, $e p\to e' X$, thereby reducing the systematic uncertainties. For $\xl >$ 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the $\gamma p$ system. For $0.64 < \xl < 0.82$, the rate of neutrons is almost independent of the Bjorken scaling variable $x$ and $Q^2$. However, at lower and higher $\xl$ values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, ${{F}^{\rm\tiny LN(3)}_2}(x,Q^2,\xl)$, rises at low values of $x$ in a way similar to that of the inclusive \ff of the proton. The total $\gamma \pi$ cross section and the structure function of the pion, $F^{\pi}_2(x_\pi,Q^2)$ where $x_\pi = x/(1-\xl)$, have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed $Q^2$, $F^{\pi}_2$ has approximately the same $x$ dependence as $F_2$ of the proton.

0 data tables match query

Identified hadron compositions in p+p and Au+Au collisions at high transverse momenta at $\sqrt{s_{_{NN}}} = 200$ GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 108 (2012) 072302, 2012.
Inspire Record 930463 DOI 10.17182/hepdata.95749

We report transverse momentum ($p_{T} \leq15$ GeV/$c$) spectra of $\pi^{\pm}$, $K^{\pm}$, $p$, $\bar{p}$, $K_{S}^{0}$, and $\rho^{0}$ at mid-rapidity in p+p and Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. Perturbative QCD calculations are consistent with $\pi^{\pm}$ spectra in p+p collisions but do not reproduce $K$ and $p(\bar{p})$ spectra. The observed decreasing antiparticle-to-particle ratios with increasing $p_T$ provide experimental evidence for varying quark and gluon jet contributions to high-$p_T$ hadron yields. The relative hadron abundances in Au+Au at $p_{T}{}^{>}_{\sim}8$ GeV/$c$ are measured to be similar to the p+p results, despite the expected Casimir effect for parton energy loss.

16 data tables match query

The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.

The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $K^0_S$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.

The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $\rho^0$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.

More…

Inclusive charged hadron production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 554 (2003) 105-114, 2003.
Inspire Record 605973 DOI 10.17182/hepdata.48854

Inclusive charged hadron production, e+e- -> e+e- h+- X, is studied using 414 pb-1 of data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 202 GeV. Single particle inclusive differential cross sections are measured as a function of the particle transverse momentum, pt, and pseudo-rapidity, eta. For p_t &lt; 1.5 GeV, the data are well described by an exponential, typical of soft hadronic processes. For higher pt, the onset of perturbative QCD processes is observed. The pi+- production cross section for pt > 5 GeV is much higher than the NLO QCD predictions.

0 data tables match query

Measurement of prompt J/psi pair production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 09 (2014) 094, 2014.
Inspire Record 1298812 DOI 10.17182/hepdata.64263

Production of prompt J/$\psi$ meson pairs in proton-proton collisions at $\sqrt{s}$ = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 inverse-femtobarns. The two J/$\psi$ mesons are fully reconstructed via their decays into $\mu^+\mu^-$ pairs. This observation provides for the first time access to the high-transverse-momentum region of J/$\psi$ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/$\psi$ transverse momentum ($p_T^{J/\psi}$) and rapidity (|$y^{J/\psi}$|): |$y^{J/\psi}$| lower than 1.2 for $p_T^{J/\psi}$ greater than 6.5 GeV/c; |$y^{J/\psi}$| in [1.2,1.43] for a $p_T$ threshold that scales linearly with |$y^{J/\psi}$| from 6.5 to 4.5 GeV/c; and |$y^{J/\psi}$| in [1.43,2.2] for $p_T^{J/\psi}$ greater than 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/$\psi$ pair production is 1.49 $\pm$ 0.07 (stat.) $\pm$ 0.13 (syst.) nb. Different assumptions about the J/$\psi$ polarization imply modifications to the cross section ranging from -31% to +27%.

0 data tables match query

Version 2
Strange hadron production in pp and pPb collisions at $\sqrt{s_\mathrm{NN}}= $ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 101 (2020) 064906, 2020.
Inspire Record 1758692 DOI 10.17182/hepdata.88283

The transverse momentum ($p_\mathrm{T}$) distributions of $\Lambda$, $\Xi^-$, and $\Omega^-$ baryons, their antiparticles, and K$^0_\mathrm{S}$ mesons are measured in proton-proton (pp) and proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV over a broad rapidity range. The data, corresponding to integrated luminosities of 40.2 nb$^{-1}$ and 15.6 $\mu$b$^{-1}$ for pp and pPb collisions, respectively, were collected by the CMS experiment. The nuclear modification factor $R_\mathrm{pPb}$, defined as the ratio of the particle yield in pPb collisions and a scaled pp reference, is measured for each particle. A strong dependence on particle species is observed in the $p_\mathrm{T}$ range from 2 to 7 GeV, where $R_\mathrm{pPb}$ for K$^0_\mathrm{S}$ is consistent with unity, while an enhancement ordered by strangeness content and/or particle mass is observed for the three baryons. In pPb collisions, the strange hadron production is asymmetric about the nucleon-nucleon center-of-mass rapidity. Enhancements, which depend on the particle type, are observed in the direction of the Pb beam. The results are compared to predictions from EPOS LHC, which includes parametrized radial flow. The model is in qualitative agreement with the $R_\mathrm{pPb}$ data, but fails to describe the dependence on particle species in the yield asymmetries measured away from mid-rapidity in pPb collisions.

0 data tables match query

Search for pair production of scalar and vector leptoquarks decaying to muons and bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-21-019, 2024.
Inspire Record 2758137 DOI 10.17182/hepdata.146074

A search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date.

0 data tables match query

Constraints on anomalous Higgs boson couplings from its production and decay using the WW channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-008, 2024.
Inspire Record 2764172 DOI 10.17182/hepdata.146013

A study of the anomalous couplings of the Higgs boson to vector bosons, including $CP$-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The different-flavor dilepton (e$\mu$) final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.

0 data tables match query