Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Sci.Adv. 9 (2023) eabq3903, 2023.
Inspire Record 2062296 DOI 10.17182/hepdata.132921

A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultra-relativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus forming a short-lived vector meson (e.g. ${\rho^0}$). In this experiment, the polarization was utilized in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ${\rho^0\rightarrow\pi^+\pi^-}$ decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ${\rho^0}$ travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions, and found to be $6.53\pm 0.06$ fm ($^{197} {\rm Au }$) and $7.29\pm 0.08$ fm ($^{238} {\rm U}$), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of non-identical particles.

0 data tables match query

Beam energy dependence of (anti-)deuteron production in Au+Au collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 99 (2019) 064905, 2019.
Inspire Record 1727273 DOI 10.17182/hepdata.105510

We report the energy dependence of mid-rapidity (anti-)deuteron production in Au+Au collisions at $\sqrt{s_\text{NN}} =\ $7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, measured by the STAR experiment at RHIC. The yield of deuterons is found to be well described by the thermal model. The collision energy, centrality, and transverse momentum dependence of the coalescence parameter $B_2$ are discussed. We find that the values of $B_2$ for anti-deuterons are systematically lower than those for deuterons, indicating that the correlation volume of anti-baryons is larger than that of baryons at $\sqrt{s_\text{NN}}$ from 19.6 to 39 GeV. In addition, values of $B_2$ are found to vary with collision energy and show a broad minimum around $\sqrt{s_\text{NN}}=\ $20 to 40 GeV, which might imply a change of the equation of state of the medium in these collisions.

0 data tables match query

Results on Total and Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 808 (2020) 135663, 2020.
Inspire Record 1791591 DOI 10.17182/hepdata.94263

We report results on the total and elastic cross sections in proton-proton collisions at $\sqrt{s}=200$ GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range $0.045 \leq -t \leq 0.135$ GeV$^2$. The value of the exponential slope parameter $B$ of the elastic differential cross section $d\sigma/dt \sim e^{-Bt}$ in the measured $-t$ range was found to be $B = 14.32 \pm 0.09 (stat.)^{\scriptstyle +0.13}_{\scriptstyle -0.28} (syst.)$ GeV$^{-2}$. The total cross section $\sigma_{tot}$, obtained from extrapolation of the $d\sigma/dt$ to the optical point at $-t = 0$, is $\sigma_{tot} = 54.67 \pm 0.21 (stat.) ^{\scriptstyle +1.28}_{\scriptstyle -1.38} (syst.)$ mb. We also present the values of the elastic cross section $\sigma_{el} = 10.85 \pm 0.03 (stat.) ^{\scriptstyle +0.49}_{\scriptstyle -0.41}(syst.)$ mb, the elastic cross section integrated within the STAR $t$-range $\sigma^{det}_{el} = 4.05 \pm 0.01 (stat.) ^{\scriptstyle+0.18}_{\scriptstyle -0.17}(syst.)$ mb, and the inelastic cross section $\sigma_{inel} = 43.82 \pm 0.21 (stat.) ^{\scriptstyle +1.37}_{\scriptstyle -1.44} (syst.)$ mb. The results are compared with the world data.

0 data tables match query

Probing the gluonic structure of the deuteron with $J/\psi$ photoproduction in d+Au ultra-peripheral collisions

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 122303, 2022.
Inspire Record 1922652 DOI 10.17182/hepdata.113508

Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of $J/\psi$ photoproduction off the deuteron in UPCs at the center-of-mass energy $\sqrt{s_{_{\rm NN}}}=200~\rm GeV$ in d$+$Au collisions. The differential cross section as a function of momentum transfer $-t$ is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.

0 data tables match query

Transverse spin transfer to $\Lambda$ and $\bar{\Lambda}$ hyperons in polarized proton-proton collisions at $\sqrt{s}=200\,\mathrm{GeV}$

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 091103, 2018.
Inspire Record 1691271 DOI 10.17182/hepdata.105628

The transverse spin transfer from polarized protons to $\Lambda$ and $\bar{\Lambda}$ hyperons is expected to provide sensitivity to the transversity distribution of the nucleon and to the transversely polarized fragmentation functions. We report the first measurement of the transverse spin transfer to $\Lambda$ and $\bar{\Lambda}$ along the polarization direction of the fragmenting quark, $D_\mathrm{TT}$, in transversely polarized proton-proton collisions at $\sqrt{s}=200\,\mathrm{GeV}$ with the STAR detector at RHIC. The data correspond to an integrated luminosity of $18\,\mathrm{pb}^{-1}$ and cover the pseudorapidity range $\left|\eta\right| < 1.2$ and transverse momenta $p_{\mathrm{T}}$ up to $8\,\mathrm{GeV}/c$. The dependence on $p_\mathrm{T}$ and $\eta$ are presented. The $D_\mathrm{TT}$ results are found to be comparable with a model prediction, and are also consistent with zero within uncertainties.

0 data tables match query

Longitudinal and transverse spin transfer to $\Lambda$ and $\overline{\Lambda}$ hyperons in polarized $p$+$p$ collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.D 109 (2024) 012004, 2024.
Inspire Record 2703253 DOI 10.17182/hepdata.144919

The longitudinal and transverse spin transfers to $\Lambda$ ($\overline{\Lambda}$) hyperons in polarized proton-proton collisions are expected to be sensitive to the helicity and transversity distributions, respectively, of (anti-)strange quarks in the proton, and to the corresponding polarized fragmentation functions. We report improved measurements of the longitudinal spin transfer coefficient, $D_{LL}$, and the transverse spin transfer coefficient, $D_{TT}$, to $\Lambda$ and $\overline{\Lambda}$ in polarized proton-proton collisions at $\sqrt{s}$ = 200 GeV by the STAR experiment at RHIC. The data set includes longitudinally polarized proton-proton collisions with an integrated luminosity of 52 pb$^{-1}$, and transversely polarized proton-proton collisions with a similar integrated luminosity. Both data sets have about twice the statistics of previous results and cover a kinematic range of $|\eta_{\Lambda(\overline{\Lambda})}|$$<$ 1.2 and transverse momentum $p_{T,{\Lambda(\overline{\Lambda})}}$ up to 8 GeV/$c$. We also report the first measurements of the hyperon spin transfer coefficients $D_{LL}$ and $D_{TT}$ as a function of the fractional jet momentum $z$ carried by the hyperon, which can provide more direct constraints on the polarized fragmentation functions.

0 data tables match query

Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 105 (2022) 014901, 2022.
Inspire Record 1914564 DOI 10.17182/hepdata.115993

The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $\sqrt{s_{\rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.

0 data tables match query

Low-$p_T$ $e^{+}e^{-}$ pair production in Au$+$Au collisions at $\sqrt{s_{NN}}$ = 200 GeV and U$+$U collisions at $\sqrt{s_{NN}}$ = 193 GeV at STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 121 (2018) 132301, 2018.
Inspire Record 1676541 DOI 10.17182/hepdata.84821

We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $

35 data tables match query

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

More…

Measurement of inclusive electrons from open heavy-flavor hadron decays in $p$+$p$ collisions at $\sqrt{s} = 200$ GeV with the STAR detector

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.D 105 (2022) 032007, 2022.
Inspire Record 1928900 DOI 10.17182/hepdata.113876

We report a new measurement of the production cross section for inclusive electrons from open heavy-flavor hadron decays as a function of transverse momentum ($p_{\rm T}$) at mid-rapidity ($|y|<$ 0.7) in $p$+$p$ collisions at $\sqrt{s} = 200$ GeV. The result is presented for 2.5 $<p_{\rm T}<$ 10 GeV/$c$ with an improved precision above 6 GeV/$c$ with respect to the previous measurements, providing more constraints on perturbative QCD calculations. Moreover, this measurement also provides a high-precision reference for measurements of nuclear modification factors for inclusive electrons from open-charm and -bottom hadron decays in heavy-ion collisions.

0 data tables match query

Search for the Chiral Magnetic Effect in Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}}=27$ GeV with the STAR forward Event Plane Detectors

The STAR collaboration Aboona, Bassam ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Lett.B 839 (2023) 137779, 2023.
Inspire Record 2148920 DOI 10.17182/hepdata.133216

A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}}=27$ GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity $|\eta|<1.0$ and at forward rapidity $2.1 < |\eta|<5.1$. We compare the results based on the directed flow plane ($\Psi_1$) at forward rapidity and the elliptic flow plane ($\Psi_2$) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to $\Psi_1$ than to $\Psi_2$, while a flow driven background scenario would lead to a consistent result for both event planes. In 10-50% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.

0 data tables match query