Measurement of Bose-Einstein Correlations in pp Collisions at sqrt(s)=0.9 and 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 05 (2011) 029, 2011.
Inspire Record 884808 DOI 10.17182/hepdata.60018

Bose-Einstein correlations between identical particles are measured in samples of proton-proton collisions at 0.9 and 7 TeV centre-of-mass energies, recorded by the CMS experiment at the LHC. The signal is observed in the form of an enhancement of number of pairs of same-sign charged particles with small relative momentum. The dependence of this enhancement on kinematic and topological features of the event is studied.

0 data tables match query

Charged particle transverse momentum spectra in pp collisions at sqrt(s) = 0.9 and 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 08 (2011) 086, 2011.
Inspire Record 896764 DOI 10.17182/hepdata.57523

The charged particle transverse momentum (pT) spectra are presented for pp collisions at sqrt(s)=0.9 and 7 TeV. The data samples were collected with the CMS detector at the LHC and correspond to integrated luminosities of 231 inverse microbarns and 2.96 inverse picobarns, respectively. Calorimeter-based high-transverse-energy triggers are employed to enhance the statistical reach of the high-pT measurements. The results are compared with both leading-order QCD and with an empirical scaling of measurements at different collision energies using the scaling variable xT = 2 pT/sqrt(s) over the pT range up to 200 GeV/c. Using a combination of xT scaling and direct interpolation at fixed pT, a reference transverse momentum spectrum at sqrt(s)=2.76 TeV is constructed, which can be used for studying high-pT particle suppression in the dense QCD medium produced in heavy-ion collisions at that centre-of-mass energy.

0 data tables match query

Study of the Underlying Event at Forward Rapidity in pp Collisions at $\sqrt{s}$ = 0.9, 2.76, and 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 04 (2013) 072, 2013.
Inspire Record 1218372 DOI 10.17182/hepdata.66750

The underlying event activity in proton-proton collisions at forward pseudorapidity (-6.6 < eta < -5.2) is studied with the CMS detector at the LHC, using a novel observable: the ratio of the forward energy density, dE/d(eta), for events with a charged-particle jet produced at central pseudorapidity (abs(eta[jet]) < 2) to the forward energy density for inclusive events. This forward energy density ratio is measured as a function of the central jet transverse momentum, pt, at three different pp centre-of-mass energies (sqrt(s) = 0.9, 2.76, and 7 TeV). In addition, the sqrt(s) evolution of the forward energy density is studied in inclusive events and in events with a central jet. The results are compared to those of Monte Carlo event generators for pp collisions and are discussed in terms of the underlying event. Whereas the dependence of the forward energy density ratio on jet pt at each sqrt(s) separately can be well reproduced by some models, all models fail to simultaneously describe the increase of the forward energy density with sqrt(s) in both inclusive events and in events with a central jet.

0 data tables match query

Study of the inclusive production of charged pions, kaons, and protons in pp collisions at sqrt(s) = 0.9, 2.76, and 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 72 (2012) 2164, 2012.
Inspire Record 1123117 DOI 10.17182/hepdata.59366

Spectra of identified charged hadrons are measured in pp collisions at the LHC for sqrt(s) = 0.9, 2.76, and 7 TeV. Charged pions, kaons, and protons in the transverse-momentum range pt approximately 0.1-1.7 GeV and for rapidities abs(y) < 1 are identified via their energy loss in the CMS silicon tracker. The average pt increases rapidly with the mass of the hadron and the event charged-particle multiplicity, independently of the center-of-mass energy. The fully corrected pt spectra and integrated yields are compared to various tunes of the PYTHIA6 and PYTHIA8 event generators.

0 data tables match query

Two-pion Bose-Einstein correlations in pp collisions at sqrt(s)=900 GeV

The ALICE collaboration Aamodt, K ; Abel, N ; Abeysekara, U. ; et al.
Phys.Rev.D 82 (2010) 052001, 2010.
Inspire Record 860477 DOI 10.17182/hepdata.55128

We report on the measurement of two-pion correlation functions from pp collisions at $\sqrt{s}=900$ GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the HBT radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at RHIC and at Tevatron, is not manifest in our data.

0 data tables match query

Low-$p_T$ $e^{+}e^{-}$ pair production in Au$+$Au collisions at $\sqrt{s_{NN}}$ = 200 GeV and U$+$U collisions at $\sqrt{s_{NN}}$ = 193 GeV at STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 121 (2018) 132301, 2018.
Inspire Record 1676541 DOI 10.17182/hepdata.84821

We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $

35 data tables match query

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

More…

Multiplicity dependence of two-particle azimuthal correlations in pp collisions at the LHC

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 09 (2013) 049, 2013.
Inspire Record 1241570 DOI 10.17182/hepdata.62319

We present the measurements of particle pair yields per trigger particle obtained from di-hadron azimuthal correlations in pp collisions at $\sqrt{s} = 0.9$, $2.76$, and $7$ TeV recorded with the ALICE detector. The yields are studied as a function of the charged particle multiplicity. Taken together with the single particle yields the pair yields provide information about parton fragmentation at low transverse momenta, as well as on the contribution of multiple parton interactions to particle production. Data are compared to calculations using the PYTHIA6, PYTHIA8, and PHOJET event generators.

0 data tables match query

Inclusive photon production at forward rapidities in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 661, 2023.
Inspire Record 2637678 DOI 10.17182/hepdata.141495

A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector in the forward pseudorapidity region $2.3 < \eta_{\rm lab} < 3.9$ is presented. Measurements in p$-$Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p$-$Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p$-$Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in \pp collisions and for different centrality classes in p$-$Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.

0 data tables match query

Midrapidity antiproton-to-proton ratio in pp collisions at $\sqrt{s} = 0.9$ and $7$~TeV measured by the ALICE experiment

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Phys.Rev.Lett. 105 (2010) 072002, 2010.
Inspire Record 859610 DOI 10.17182/hepdata.55557

The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\sqrt{s} = 0.9$ and $7$ TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\rm{t}} < 1.05$ GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \pm 0.006 (stat.) \pm 0.014 (syst.)$ at $0.9$ TeV and $R_{|y| < 0.5} = 0.991 \pm 0.005 (stat.) \pm 0.014 (syst.)$ at $7$ TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

0 data tables match query

Femtoscopy of pp collisions at sqrt{s}=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Rev.D 84 (2011) 112004, 2011.
Inspire Record 884741 DOI 10.17182/hepdata.74220

We report on the high statistics two-pion correlation functions from pp collisions at $\sqrt{s}=0.9$ TeV and $\sqrt{s}$=7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar at the two collision energies. A three-dimensional femtoscopic analysis shows an increase of the emission zone with increasing event multiplicity as well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronounced as multiplicity increases. This suggests the development of space-momentum correlations, at least for collisions producing a high multiplicity of particles. We consider these trends in the context of previous femtoscopic studies in high-energy hadron and heavy-ion collisions, and discuss possible underlying physics mechanisms. Detailed analysis of the correlation reveals an exponential shape in the outward and longitudinal directions, while the sideward remains a Gaussian. This is interpreted as a result of a significant contribution of strongly decaying resonances to the emission region shape. Significant non-femtoscopic correlations are observed, and are argued to be the consequence of "mini-jet"-like structures extending to low $p_{\rm T}$. They are well reproduced by the Monte-Carlo generators and seen also in $\pi^+\pi^-$ correlations.

0 data tables match query