Evidence for top quark production in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.D 50 (1994) 2966-3026, 1994.
Inspire Record 372952 DOI 10.17182/hepdata.50086

We present the results of a search for the top quark in 19.3 pb−1 of p¯p collisions at √s =1.8 TeV. The data were collected at the Fermilab Tevatron collider using the Collider Detector at Fermilab (CDF). The search includes standard model tt¯ decays to final states eeνν¯, eμνν¯, and μμνν¯ as well as e+ν+jets or μ+ν+jets. In the (e,μ)+ν+jets channel we search for b quarks from t decays via secondary vertex identification and via semileptonic decays of the b and cascade c quarks. In the dilepton final states we find two events with a background of 0.56−0.13+0.25 events. In the e,μ+ν+jets channel with a b identified via a secondary vertex, we find six events with a background of 2.3±0.3. With a b identified via a semileptonic decay, we find seven events with a background of 3.1±0.3. The secondary vertex and semileptonic-decay samples have three events in common. The probability that the observed yield is consistent with the background is estimated to be 0.26%. The statistics are too limited to firmly establish the existence of the top quark; however, a natural interpretation of the excess is that it is due to tt¯ production. We present several cross-checks. Some support this hypothesis; others do not. Under the assumption that the excess yield over background is due to tt¯, constrained fitting on a subset of the events yields a mass of 174±10−12+13 GeV/c2 for the top quark. The tt¯ cross section, using this top quark mass to compute the acceptance, is measured to be 13.9−4.8+6.1 pb.

0 data tables match query

Evidence for top quark production in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.Lett. 73 (1994) 225-231, 1994.
Inspire Record 373362 DOI 10.17182/hepdata.42494

We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of $\bar{p}p$ collisions at $\sqrt{s}$= 1.8 TeV with an integrated luminosity of 19.3pb$~{-1}$. We find 12 events consistent with either two $W$ bosons, or a $W$ boson and at least one $b$ jet. The probability that the measured yield is consistent with the background is 0.26\%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. Under this assumption, constrained fits to individual events yield a top quark mass of $174 \pm 10~{+13}_{-12}$ GeV/c$~2$. The $t\bar{t}$ production cross section is measured to be $13.9~{+6.1}_{-4.8}$pb. (Submitted to Physical Review Letters on May 16, 1994).

0 data tables match query

A Measurement of jet shapes in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Anway, Carol E. ; et al.
Phys.Rev.Lett. 70 (1993) 713-717, 1993.
Inspire Record 340125 DOI 10.17182/hepdata.19744

We present a measurement of jet shapes in p¯p collisions at √s =1.8 TeV at the Fermilab Tevatron using the Collider Detector at Fermilab (CDF). Qualitative agreement is seen with the predictions of recent next-to-leading [O(αs3)] calculations and with leading logarithm QCD based Monte Carlo simulations. The dependence of the jet shape on transverse energy is studied.

0 data tables match query

Measurement of the bottom quark production cross-section using semileptonic decay electrons in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.Lett. 71 (1993) 500-504, 1993.
Inspire Record 355097 DOI 10.17182/hepdata.19700

We present measurements of the bottom-quark production cross sections in pp¯ collisions at √s =1.8 TeV. From the inclusive electron production rate, we have determined the bottom-quark production cross sections to be 1010±270, 168±43, 37±10 nb for the rapidity range of ‖yb‖<1.0 and the transverse momentum ranges of pTb>15, 23, 32 GeV/c, respectively. In addition, from the associated electron-D0 production rate, we have determined the bottom-quark cross section to be 364±80(stat)±95(syst) nb for ‖yb‖<1.0 and pTb>19 GeV/c.

0 data tables match query

Search for quark compositeness, axigluons and heavy particles using the dijet invariant mass spectrum observed in p anti-p collisions

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Akimoto, H. ; et al.
Phys.Rev.Lett. 71 (1993) 2542-2546, 1993.
Inspire Record 356676 DOI 10.17182/hepdata.19713

The dijet invariant mass distribution has been measured in the region between 140 and 1000 GeV/c2, in 1.8 TeV p p¯ collisions. Data collected with the Collider Detector at Fermilab show agreement with QCD calculations. A limit on quark compositeness of Λc>1.3 TeV is obtained. Axigluons with masses between 240 and 640 GeV/c2 are excluded at 95% C.L. if we assume ten open decay channels. Model-independent limits on the production of heavy particles decaying into two jets are also presented.

0 data tables match query

Evidence for Higgs boson decays to a low-mass dilepton system and a photon in pp collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale Charles ; et al.
Phys.Lett.B 819 (2021) 136412, 2021.
Inspire Record 1852325 DOI 10.17182/hepdata.102955

A search for the Higgs boson decaying into a photon and a pair of electrons or muons with an invariant mass $m_{\ell\ell} < 30$ GeV is presented. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data, produced by the LHC at a centre-of-mass energy of 13 TeV and collected by the ATLAS experiment. Evidence for the $H \rightarrow \ell \ell \gamma$ process is found with a significance of 3.2$\sigma$ over the background-only hypothesis, compared to an expected significance of 2.1$\sigma$. The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the Standard Model, is $\mu = 1.5 \pm 0.5$. The Higgs boson production cross-section times the $H \rightarrow\ell\ell\gamma$ branching ratio for $m_{\ell\ell} <$ 30 GeV is determined to be 8.7 $^{+2.8}_{-2.7}$ fb.

0 data tables match query

Comparison of jet production in anti-p p collisions at S**(1/2) = 546-GeV and 1800-GeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Anway, Carol E. ; et al.
Phys.Rev.Lett. 70 (1993) 1376-1380, 1993.
Inspire Record 341846 DOI 10.17182/hepdata.19770

Inclusive jet cross sections have been measured in p¯p collisions at √s =546 and 1800 GeV, using the Collider Detector at Fermilab. The ratio of jet cross sections is compared to predictions from simple scaling and O(as3) QCD. Our data exclude scaling and lie (1.5–2.4)σ below a range of QCD predictions.

0 data tables match query

Inclusive J / psi, psi (2S) and b quark production in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Anway, Carol E. ; et al.
Phys.Rev.Lett. 69 (1992) 3704-3708, 1992.
Inspire Record 340126 DOI 10.17182/hepdata.19780

Inclusive J/ψ and ψ(2S) production has been studied in p¯p collisions at √s =1.8 TeV using 2.6±0.2 pb−1 of data taken with the Collider Detector at Fermilab. The products of production cross section times branching fraction were measured as functions of PT for J/ψ→μ+μ− and ψ(2S)→μ+μ−. In the kinematic range PT>6 GeV/c and ‖η‖≤0.5 we get σ(p¯p→J/ψ X)B(J/ψ→μ+μ−) =6.88±0.23(stat)−1.08+0.93(syst) nb, and σ(p¯p→ψ(2S)X)B(ψ(2S)→μ+μ−) =0.232±0.051(stat)−0.032+0.029(syst)nb. From these values we calculate the inclusive b-quark production cross section.

0 data tables match query

Measurement of the cross-section for production of two isolated prompt photons in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.Lett. 70 (1993) 2232-2236, 1993.
Inspire Record 343802 DOI 10.17182/hepdata.19755

We present measurements from events with two isolated prompt photons in p¯p collisions at √s =1.8 TeV. The differential cross section, measured as a function of transverse momentum (PT) of each photon, is about 3 times what next-to-leading-order QCD calculations predict. The cross section for photons with PT in the range 10–19 GeV is 86±27(stat)−23+32(syst) pb. We also study the correlation between the two photons in both azimuthal angle and PT. The magnitude of the vector sum of the transverse momenta of both photons, KT=‖PT1+PT2‖, has a mean value of 〈KT〉=5.1±1.1 GeV.

0 data tables match query

A Measurement of the ratio sigma x B (p anti-p ---> W ---> e neutrino) / sigma x B (p anti-p ---> Z0 ---> e e) in p anti-p collisions at s**(1/2) = 1800-GeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amendolia, S.R. ; et al.
Phys.Rev.D 52 (1995) 2624-2655, 1995.
Inspire Record 395439 DOI 10.17182/hepdata.42470

We present an analysis of data from p p¯ collisions at a center-of-mass energy of √s =1800 GeV. A measurement is made of the ratio R≡σB(p p¯→W→eν)/σB(p p¯→Z0→ee). The data represent 19.6 pg−1 collected by the Collider Detector at Fermilab during the 1992–1993 collider run of the Fermilab Tevatron. We find R=10.90±0.32(stat)±0.29(syst), and from this value we extract a measurement of the W→eν branching ratio Γ(W→eν)/Γ(W)=0.1094±0.0033(stat)±0.0031(syst). From this branching ratio we set a limit on the top quark mass of mt>62 GeV/c2 at the 95% confidence level. In contrast with direct searches for the top quark, this limit makes no assumptions about the allowed decay modes of the top quark. In addition, we use a calculation of the leptonic width Γ(W→eν) to obtain a value for the W total decay width: Γ(W)=2.064±0.060(stat)±0.059(syst) GeV.

0 data tables match query