Evidence for collectivity in pp collisions at the LHC

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 765 (2017) 193-220, 2017.
Inspire Record 1471287 DOI 10.17182/hepdata.76506

Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.

0 data tables match query

Observation of correlated azimuthal anisotropy Fourier harmonics in pp and pPb collisions at the LHC

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 092301, 2018.
Inspire Record 1626103 DOI 10.17182/hepdata.79667

The azimuthal anisotropy Fourier coefficients ($v_n$) in 8.16 TeV pPb data are extracted via long-range two-particle correlations as a function of event multiplicity and compared to corresponding results in pp and PbPb collisions. Using a four-particle cumulant technique, $v_n$ correlations are measured for the first time in pp and pPb collisions. The $v_2$ and $v_4$ coefficients are found to be positively correlated in all collision systems. For high multiplicity pPb collisions an anticorrelation of $v_2$ and $v_3$ is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The new correlation results strengthen the case for a common origin of the collectivity seen in pPb and PbPb collisions in the measured multiplicity range.

0 data tables match query

Search for the Higgs boson decaying to two muons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 021801, 2019.
Inspire Record 1682776 DOI 10.17182/hepdata.88058

A search for the Higgs boson decaying to two oppositely charged muons is presented using data recorded by the CMS experiment at the CERN LHC in 2016 at a center-of-mass energy $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Data are found to be compatible with the predicted background. For a Higgs boson with a mass of 125.09 GeV, the 95% confidence level observed (background-only expected) upper limit on the production cross section times branching fraction to a pair of muons is found to be 3.0 (2.5) times the standard model expectation. In combination with data recorded at center-of-mass energies $\sqrt{s} =$ 7 and 8 TeV, the background-only expected upper limit improves to 2.2 times the standard model value with a standard model expected significance of 1.0 standard deviations. The corresponding observed upper limit is 2.9 with an observed significance of 0.9 standard deviations. This corresponds to an observed upper limit on the standard model Higgs boson branching fraction to muons of 6.4 $\times$ 10$^{-4}$ and to an observed signal strength of 1.0 $\pm$ 1.0 (stat) $\pm$ 0.1 (syst).

0 data tables match query

Searches for invisible decays of the Higgs boson in pp collisions at $\sqrt{s}$ = 7, 8, and 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 02 (2017) 135, 2017.
Inspire Record 1495025 DOI 10.17182/hepdata.79078

Searches for invisible decays of the Higgs boson are presented. The data collected with the CMS detector at the LHC correspond to integrated luminosities of 5.1, 19.7, and 2.3 inverse femtobarns at centre-of-mass energies of 7, 8, and 13 TeV, respectively. The search channels target Higgs boson production via gluon fusion, vector boson fusion, and in association with a vector boson. Upper limits are placed on the branching fraction of the Higgs boson decay to invisible particles, as a function of the assumed production cross sections. The combination of all channels, assuming standard model production, yields an observed (expected) upper limit on the invisible branching fraction of 0.24 (0.23) at the 95% confidence level. The results are also interpreted in the context of Higgs-portal dark matter models.

0 data tables match query

Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the LHC

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 97 (2018) 044912, 2018.
Inspire Record 1614482 DOI 10.17182/hepdata.82637

Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum ($p_\mathrm{t}$) difference, and the $p_\mathrm{t}$ average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlators with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a $v_2$-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the $v_2$-independent fraction of the three-particle correlator are estimated to be 13% for pPb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.

0 data tables match query

Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 082301, 2018.
Inspire Record 1670168 DOI 10.17182/hepdata.83911

The elliptic azimuthal anisotropy coefficient ($v_2$) is measured for charm (D$^0$) and strange (K$_\mathrm{S}^0$, $\Lambda$, $\Xi^-$, and $\Omega^-$) hadrons, using a data sample of pPb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV. A significant positive $v_2$ signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity pPb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller $v_2$ than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV, also presented.

0 data tables match query

Investigation into the event-activity dependence of $\Upsilon$(nS) relative production in proton-proton collisions at $\sqrt{s} = $ 7 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2020) 001, 2020.
Inspire Record 1805867 DOI 10.17182/hepdata.95684

The ratios of the production cross sections between the excited $\Upsilon$(2S) and $\Upsilon$(3S) mesons and the $\Upsilon$(1S) ground state, detected via their decay into two muons, are studied as a function of the number of charged particles in the event. The data are from proton-proton collisions at $\sqrt{s} =$ 7 TeV, corresponding to an integrated luminosity of 4.8 fb$^{-1}$, collected with the CMS detector at the LHC. Evidence of a decrease in these ratios as a function of the particle multiplicity is observed, more pronounced at low transverse momentum $p_\mathrm{T}^{\mu\mu}$. For $\Upsilon$(nS) mesons with $p_\mathrm{T}^{\mu\mu}$ $\gt$ 7 GeV, where most of the data were collected, the correlation with multiplicity is studied as a function of the underlying event transverse sphericity and the number of particles in a cone around the $\Upsilon$(nS) direction. The ratios are found to be multiplicity independent for jet-like events. The mean $p_\mathrm{T}^{\mu\mu}$ values for the $\Upsilon$(nS) states as a function of particle multiplicity are also measured and found to grow more steeply as their mass increases.

0 data tables match query

Study of dijet events with a large rapidity gap between the two leading jets in pp collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 242, 2018.
Inspire Record 1629153 DOI 10.17182/hepdata.80169

Events with no charged particles produced between the two leading jets are studied in proton-proton collisions at $\sqrt{s}$ = 7 TeV. The jets were required to have transverse momentum $p_\mathrm{T}^{\text{jet}}$ > 40 GeV and pseudorapidity 1.5 $<|\eta^{\text{jet}}| <$ 4.7, and to have values of $\eta^{\text{jet}}$ with opposite signs. The data used for this study were collected with the CMS detector during low-luminosity running at the LHC, and correspond to an integrated luminosity of 8 pb$^{-1}$. Events with no charged particles with $p_\mathrm{T}$ > 0.2 GeV in the interval -1 < $\eta$ < 1 between the jets are observed in excess of calculations that assume no color-singlet exchange. The fraction of events with such a rapidity gap, amounting to 0.5-1% of the selected dijet sample, is measured as a function of the $p_\mathrm{T}$ of the second-leading jet and of the rapidity separation between the jets. The data are compared to previous measurements at the Tevatron, and to perturbative quantum chromodynamics calculations based on the Balitsky-Fadin-Kuraev-Lipatov evolution equations, including different modelings of the non-perturbative gap survival probability.

0 data tables match query

Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2017) 047, 2017.
Inspire Record 1608162 DOI 10.17182/hepdata.80189

Properties of the Higgs boson are measured in the H to ZZ to 4l (l= e, mu) decay channel. A data sample of proton-proton collisions at sqrt(s) = 13 TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 inverse femtobarns is used. The signal strength modifier mu, defined as the ratio of the observed Higgs boson rate in the H to ZZ to 4l decay channel to the standard model expectation, is measured to be mu = 1.05 +0.19/-0.17 at m[H ]= 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2.92 +0.48/-0.44 (stat) +0.28/-0.24 (syst) fb, which is compatible with the standard model prediction of 2.76 +/- 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m[H] = 125.26 +/- 0.21 GeV and the width is constrained using on-shell production to be Gamma[H] < 1.10 GeV, at 95% confidence level.

0 data tables match query

Version 2
Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 161, 2021.
Inspire Record 1911567 DOI 10.17182/hepdata.102987

A measurement of the top quark mass is performed using a data sample enriched with single top quark events produced in the $t$ channel. The study is based on proton-proton collision data, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC in 2016. Candidate events are selected by requiring an isolated high-momentum lepton (muon or electron) and exactly two jets, of which one is identified as originating from a bottom quark. Multivariate discriminants are designed to separate the signal from the background. Optimized thresholds are placed on the discriminant outputs to obtain an event sample with high signal purity. The top quark mass is found to be 172.13 $^{+0.76}_{-0.77}$ GeV, where the uncertainty includes both the statistical and systematic components, reaching sub-GeV precision for the first time in this event topology. The masses of the top quark and antiquark are also determined separately using the lepton charge in the final state, from which the mass ratio and difference are determined to be 0.9952 $^{+0.0079}_{-0.0104}$ and 0.83 $^{+1.79}_{-1.35}$ GeV, respectively. The results are consistent with $CPT$ invariance.

0 data tables match query