Nuclear stopping in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 93 (2004) 102301, 2004.
Inspire Record 636579 DOI 10.17182/hepdata.89443

Transverse momentum spectra and rapidity densities, dN/dy, of protons, anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the rapidity range 0 < y < 3. The proton and anti-proton dN/dy decrease from mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at this energy exhibit a high degree of transparency and that the linear scaling of rapidity loss with rapidity observed at lower energies is broken. The energy loss per participant nucleon is estimated to be 73 +- 6 GeV.

0 data tables match query

Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 88 (2002) 202301, 2002.
Inspire Record 567754 DOI 10.17182/hepdata.89441

We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at Sqrt{s_NN}=200 GeV. For the 5% most central events we obtain dN_ch/deta(eta=0) = 625 +/- 55 and N_ch(-4.7&lt;= eta &lt;= 4.7) = 4630+-370, i.e. 14% and 21% increases, respectively, relative to Sqrt{s_NN}=130 GeV collisions. Charged-particle production per pair of participant nucleons is found to increase from peripheral to central collisions around mid-rapidity. These results constrain current models of particle production at the highest RHIC energy.

0 data tables match query

Charged meson rapidity distributions in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 94 (2005) 162301, 2005.
Inspire Record 647076 DOI 10.17182/hepdata.89445

We have measured rapidity densities dN/dy of pions and kaons over a broad rapidity range (-0.1 < y < 3.5) for central Au+Au collisions at sqrt(snn) = 200 GeV. These data have significant implications for the chemistry and dynamics of the dense system that is initially created in the collisions. The full phase-space yields are 1660 +/- 15 +/- 133 (pi+), 1683 +/- 16 +/- 135 (pi-), 286 +/- 5 +/- 23 (K+) and 242 +/- 4 +/- 19 (K-). The systematics of the strange to non--strange meson ratios are found to track the variation of the baryo-chemical potential with rapidity and energy. Landau--Carruthers hydrodynamic is found to describe the bulk transport of the pions in the longitudinal direction.

0 data tables match query

Centrality dependence of charged-particle pseudorapidity distributions from d + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 94 (2005) 032301, 2005.
Inspire Record 643085 DOI 10.17182/hepdata.89272

Charged-particle pseudorapidity densities are presented for the d+Au reaction at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and 60-80% centrality classes. Models incorporating both soft physics and hard, perturbative QCD-based scattering physics agree well with the experimental results. The data do not support predictions based on strong-coupling, semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4 GeV.

0 data tables match query

Rapidity Dependence of Charged Antiparticle-to-Particle Ratios in Au+Au Collisions at $\sqrt{s_{NN}}=200$ GeV

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 90 (2003) 102301, 2003.
Inspire Record 590481 DOI 10.17182/hepdata.110251

We present ratios of the numbers of charged antiparticles to particles (pions, kaons and protons) in Au + Au collisions at $\sqrt{s_{NN}}=200$ GeV as a function of rapidity in the range $y$=0-3. While the particle ratios at midrapidity are approaching unity, the $K^-/K^+$ and $\bar{p}/p$ ratios decrease significantly at forward rapidities. An interpretation of the results within the statistical model indicates a reduction of the baryon chemical potential from $\mu_B \approx 130$MeV at $y$=3 to $\mu_B \approx 25$MeV at $y$=0.

0 data tables match query

Rapidity dependence of antiproton to proton ratios in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 87 (2001) 112305, 2001.
Inspire Record 558361 DOI 10.17182/hepdata.110347

Measurements, with the BRAHMS detector, of the antiproton to proton ratio at central and forward rapidities are presented for Au+Au reactions at sqrt{s_{NN}}=130 GeV, and for three different collision centralities. For collisions in the 0-40% centrality range we find $N(\bar{{\rm p}})/N({\rm p}) = 0.64 +- 0.04 (stat.) +- 0.06 (syst.) at y ~0, 0.66 +- 0.03 +- 0.06 at y ~ 0.7, and 0.41 +- 0.04 +- 0.06 at y ~ 2. The ratios are found to be nearly independent of collision centrality and transverse momentum. The measurements demonstrate that the antiproton and proton rapidity densities vary differently with rapidity, and indicate that a net-baryon free midrapidity plateau (Bjorken limit) is not reached at this RHIC energy.

0 data tables match query

Centrality dependent particle production at y = 0 and y approx. 1 in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 72 (2005) 014908, 2005.
Inspire Record 678407 DOI 10.17182/hepdata.89446

Particle production of identified charged hadrons, $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ in Au+Au collisions at $\sqrt(snn) =$ 200 GeV has been studied as a function of transverse momentum and collision centrality at $y=0$ and $y\sim1$ by the BRAHMS experiment at RHIC. Significant collective transverse flow at kinetic freeze-out has been observed in the collisions. The magnitude of the flow rises with the collision centrality. Proton and kaon yields relative to the pion production increase strongly as the transverse momentum increases and also increase with centrality. Particle yields per participant nucleon show a weak dependence on the centrality for all particle species. Hadron production remains relatively constant within one unit around midrapidity in Au+Au collisions at $\sqrt(snn) =$ 200 GeV.

0 data tables match query

On the evolution of the nuclear modification factors with rapidity and centrality in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 93 (2004) 242303, 2004.
Inspire Record 645789 DOI 10.17182/hepdata.89444

We report on a study of the transverse momentum dependence of nuclear modification factors $R_{dAu}$ for charged hadrons produced in deuteron + gold collisions at $\sqrt{s_{NN}=\unit[200]{GeV}$, as a function of collision centrality and of the pseudorapidity ($\eta = 0,1,2.2,3.2 $) of the produced hadrons. We find significant and systematic decrease of $R_{dAu}$ with increasing rapidity. The midrapidity enhancement and the forward rapidity suppression are more pronounced in central collisions relative to peripheral collisions. These results are relevant to the study of the possible onset of gluon saturation at RHIC energies.

0 data tables match query

Transverse momentum spectra in Au + Au and d + Au collisions at s(NN)**(1/2) = 200-GeV and the pseudorapidity dependence of high p(T) suppression.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 91 (2003) 072305, 2003.
Inspire Record 622645 DOI 10.17182/hepdata.89442

We present spectra of charged hadrons from Au+Au and d+Au collisions at $\sqrt{s_{NN}}=200$ GeV measured with the BRAHMS experiment at RHIC. The spectra for different collision centralities are compared to spectra from ${\rm p}+\bar{{\rm p}}$ collisions at the same energy scaled by the number of binary collisions. The resulting ratios (nuclear modification factors) for central Au+Au collisions at $\eta=0$ and $\eta=2.2$ evidence a strong suppression in the high $p_{T}$ region ($>$2 GeV/c). In contrast, the d+Au nuclear modification factor (at $\eta=0$) exhibits an enhancement of the high $p_T$ yields. These measurements indicate a high energy loss of the high $p_T$ particles in the medium created in the central Au+Au collisions. The lack of suppression in d+Au collisions makes it unlikely that initial state effects can explain the suppression in the central Au+Au collisions.

0 data tables match query

Kaon and Pion Production in Central Au+Au Collisions at \sqrt{s_{NN}}=62.4 GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 687 (2010) 36-41, 2010.
Inspire Record 836865 DOI 10.17182/hepdata.89451

Invariant pT spectra and rapidity densities covering a large rapidity range(-0.1 < y < 3.5) are presented for $\pi^{\pm}$ and $K^{\pm}$ mesons from central Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV. The mid-rapidity yields of meson particles relative to their anti-particles are found to be close to unity ($\pi^-/\pi^+ \sim 1$, $K^-/K^+ \sim 0.85$) while the anti-proton to proton ratio is $\bar{p}/p \sim 0.49$. The rapidity dependence of the $\pi^-/\pi^+$ ratio is consistent with a small increase towards forward rapidities while the $K^-/K^+$ and $\bar{p}/p$ ratios show a steep decrease to $\sim$ 0.3 for kaons and 0.022 for protons at $y\sim 3$. It is observed that the kaon production relative to its own anti-particle as well as to pion production in wide rapidity and energy ranges shows an apparent universal behavior consistent with the baryo-chemical potential, as deduced from the $\bar{p}/p$ ratio, being the driving parameter.

0 data tables match query