Forward $J/\psi$ production in U$+$U collisions at $\sqrt{s_{NN}}$=193 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 034903, 2016.
Inspire Record 1393789 DOI 10.17182/hepdata.144239

The invariant yields for $J/\psi$ production at forward rapidity $(1.2<|y|<2.2)$ in U$+$U collisions at $\sqrt{s_{_{NN}}}$=193 GeV have been measured as a function of collision centrality. The invariant yields and nuclear-modification factor $R_{AA}$ are presented and compared with those from Au$+$Au collisions in the same rapidity range. Additionally, the direct ratio of the invariant yields from U$+$U and Au$+$Au collisions within the same centrality class is presented, and used to investigate the role of $c\bar{c}$ coalescence. Two different parameterizations of the deformed Woods-Saxon distribution were used in Glauber calculations to determine the values of the number of nucleon-nucleon collisions in each centrality class, $N_{\rm coll}$, and these were found to give significantly different $N_{\rm coll}$ values. Results using $N_{\rm coll}$ values from both deformed Woods-Saxon distributions are presented. The measured ratios show that the $J/\psi$ suppression, relative to binary collision scaling, is similar in U$+$U and Au$+$Au for peripheral and midcentral collisions, but that $J/\psi$ show less suppression for the most central U$+$U collisions. The results are consistent with a picture in which, for central collisions, increase in the $J/\psi$ yield due to $c\bar{c}$ coalescence becomes more important than the decrease in yield due to increased energy density. For midcentral collisions, the conclusions about the balance between $c\bar{c}$ coalescence and suppression depend on which deformed Woods-Saxon distribution is used to determine $N_{\rm coll}$.

0 data tables match query

Measurements of directed, elliptic, and triangular flow in Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 94 (2016) 054910, 2016.
Inspire Record 1394897 DOI 10.17182/hepdata.146752

Measurements of anisotropic flow Fourier coefficients ($v_n$) for inclusive charged particles and identified hadrons $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ produced at midrapidity in Cu+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The particle azimuthal distributions with respect to different order symmetry planes $\Psi_n$, for $n$~=~1, 2, and 3 are studied as a function of transverse momentum $p_T$ over a broad range of collisions centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared to hydrodynamical and transport model calculations. We also compare these Cu$+$Au results with those in Cu$+$Cu and Au$+$Au collisions at the same $\sqrt{s_{_{NN}}}$, and find that the $v_2$ and $v_3$, as a function of transverse momentum, follow a common scaling with $1/(\varepsilon_n N_{\rm part}^{1/3})$.

0 data tables match query

Production of $b\bar{b}$ at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 092002, 2020.
Inspire Record 1798586 DOI 10.17182/hepdata.139988

The cross section of bottom quark-antiquark ($b\bar{b}$) production in $p$+$p$ collisions at $\sqrt{s}=510$ GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider. The results are based on the yield of high mass, like-sign muon pairs measured within the PHENIX muon arm acceptance ($1.2<|y|<2.2$). The $b\bar{b}$ signal is extracted from like-sign dimuons by utilizing the unique properties of neutral $B$ meson oscillation. We report a differential cross section of $d\sigma_{b\bar{b}\rightarrow \mu^\pm\mu^\pm}/dy = 0.16 \pm 0.01~(\mbox{stat}) \pm 0.02~(\mbox{syst}) \pm 0.02~(\mbox{global})$ nb for like-sign muons in the rapidity and $p_T$ ranges $1.2<|y|<2.2$ and $p_T>1$ GeV/$c$, and dimuon mass of 5--10 GeV/$c^2$. The extrapolated total cross section at this energy for $b\bar{b}$ production is $13.1 \pm 0.6~(\mbox{stat}) \pm 1.5~(\mbox{syst}) \pm 2.7~(\mbox{global})~\mu$b. The total cross section is compared to a perturbative quantum chromodynamics calculation and is consistent within uncertainties. The azimuthal opening angle between muon pairs from $b\bar{b}$ decays and their $p_T$ distributions are compared to distributions generated using {\sc ps pythia 6}, which includes next-to-leading order processes. The azimuthal correlations and pair $p_T$ distribution are not very well described by {\sc pythia} calculations, but are still consistent within uncertainties. Flavor creation and flavor excitation subprocesses are favored over gluon splitting.

0 data tables match query

Nuclear matter effects on $J/\psi$ production in asymmetric Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.C 90 (2014) 064908, 2014.
Inspire Record 1288921 DOI 10.17182/hepdata.141714

We report on $J/\psi$ production from asymmetric Cu+Au heavy-ion collisions at $\sqrt{s_{_{NN}}}$=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of $J/\psi$ yields in Cu$+$Au collisions in the Au-going direction is found to be comparable to that in Au$+$Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, $J/\psi$ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-$x$ gluon suppression in the larger Au nucleus. The relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.

0 data tables match query

Polarization and cross section of midrapidity J/$\psi$ production in proton-proton collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 072008, 2020.
Inspire Record 1798581 DOI 10.17182/hepdata.141538

The PHENIX experiment has measured the spin alignment for inclusive $J/\psi\rightarrow e^{+}e^{-}$ decays in $p$+$p$ collisions at $\sqrt{s}=510$ GeV at midrapidity. The angular distributions have been measured in three different polarization frames, and the three decay angular coefficients have been extracted in a full two-dimensional analysis. Previously, PHENIX saw large longitudinal net polarization at forward rapidity at the same collision energy. This analysis at midrapidity, complementary to the previous PHENIX results, sees no sizable polarization in the measured transverse momentum range of $0.0<p_T<10.0$ GeV/$c$. The results are consistent with a previous one-dimensional analysis at midrapidity at $\sqrt{s}=200$ GeV. The transverse-momentum-dependent cross section for midrapidity $J/\psi$ production has additionally been measured, and after comparison to world data we find a simple logarithmic dependence of the cross section on $\sqrt{s}$.

0 data tables match query

Production of $\pi^0$, $\eta$, and $K_S$ mesons in U$+$U collisions at $\sqrt{s_{_{NN}}}=192$ GeV

The PHENIX collaboration Acharya, U. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 102 (2020) 064905, 2020.
Inspire Record 1798526 DOI 10.17182/hepdata.132824

The PHENIX experiment at the Relativistic Heavy Ion Collider measured $\pi^0$ and $\eta$ mesons at midrapidity in U$+$U collisions at $\sqrt{s_{_{NN}}}=192$ GeV in a wide transverse momentum range. Measurements were performed in the $\pi^0(\eta)\rightarrow\gamma\gamma$ decay modes. A strong suppression of $\pi^0$ and $\eta$ meson production at high transverse momentum was observed in central U$+$U collisions relative to binary scaled $p$$+$$p$ results. Yields of $\pi^0$ and $\eta$ mesons measured in U$+$U collisions show similar suppression pattern to the ones measured in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for similar numbers of participant nucleons. The $\eta$/$\pi^0$ ratios do not show dependence on centrality or transverse momentum, and are consistent with previously measured values in hadron-hadron, hadron-nucleus, nucleus-nucleus, and $e^+e^-$ collisions.

0 data tables match query

Measurements of double-helicity asymmetries in inclusive $J/\psi$ production in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 94 (2016) 112008, 2016.
Inspire Record 1467456 DOI 10.17182/hepdata.82575

We report the double helicity asymmetry, $A_{LL}^{J/\psi}$, in inclusive $J/\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\sqrt{s}=510$ GeV longitudinally polarized $p

0 data tables match query

Inclusive cross section and double-helicity asymmetry for $\pi^{0}$ production at midrapidity in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 93 (2016) 011501, 2016.
Inspire Record 1396712 DOI 10.17182/hepdata.144863

PHENIX measurements are presented for the cross section and double-helicity asymmetry ($A_{LL}$) in inclusive $\pi^0$ production at midrapidity from $p$$+$$p$ collisions at $\sqrt{s}=510$~GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The $\pi^{0}A_{LL}$ results follow an increasingly positive asymmetry trend with $p_T$ and $\sqrt{s}$ with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on $\pi^0$ and jet $A_{LL}$, and suggested a positive contribution of gluon polarization to the spin of the proton $\Delta G$ for the gluon momentum fraction range $x>0.05$. The data presented here extend to a currently unexplored region, down to $x\sim0.01$, and thus provide additional constraints on the value of $\Delta G$. The results confirm the evidence for nonzero $\Delta G$ using a different production channel in a complementary kinematic region.

0 data tables match query

Anti-proton production in relativistic Si nucleus collisions

The E814 collaboration Barrette, J. ; Bellwied, R. ; Braun-Munzinger, P. ; et al.
Phys.Rev.Lett. 70 (1993) 1763-1766, 1993.
Inspire Record 358657 DOI 10.17182/hepdata.19760

We have measured antiproton production cross sections as functions of centrality in collisions of 14.6 GeV/c per nucleon Si28 ions with targets of Al, Cu, and Pb. For all targets, the antiproton yields increase linearly with the number of projectile nucleons that have interacted, and show little target dependence. We discuss the implications of this result on the production and absorption of antiprotons within the nuclear medium.

0 data tables match query

Source breakup dynamics in Au+Au Collisions at sqrt(s_NN)=200 GeV via three-dimensional two-pion source imaging

The PHENIX collaboration Afanasiev, S. ; Aidala, Christine Angela ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 100 (2008) 232301, 2008.
Inspire Record 771583 DOI 10.17182/hepdata.140842

A three-dimensional (3D) correlation function obtained from mid-rapidity, low pT pion pairs in central Au+Au collisions at sqrt(s_NN)=200 GeV is studied. The extracted model-independent source function indicates a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). Model comparisons to these distensions indicate a proper breakup time \tau_0 ~ 9 fm/c and a mean proper emission duration \Delta\tau ~ 2 fm/c, leading to sizable emission time differences (<|\Delta \tau_LCM |> ~ 12 fm/c), partly due to resonance decays. They also suggest an outside-in 'burning' of the emission source reminiscent of many hydrodynamical models.

0 data tables match query