Centrality categorization for $R_{p(d)+A}$ in high-energy collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 90 (2014) 034902, 2014.
Inspire Record 1261055 DOI 10.17182/hepdata.142640

High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we find that the connection to geometry is confirmed by measuring the fraction of events in which a neutron from the deuteron does not interact with the nucleus. As an application, we consider the nuclear modification factors R_{p(d)+A}, for which there is a potential bias in the measured centrality dependent yields due to auto-correlations between the process of interest and the backward rapidity multiplicity. We determine the bias correction factor within this framework. This method is further tested using the HIJING Monte Carlo generator. We find that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an order of magnitude larger and strongly p_T dependent, likely due to the larger effect of multi-parton interactions.

0 data tables match query

Measurement of the W mass in e+ e- collisions at production threshold

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Lett.B 401 (1997) 347-362, 1997.
Inspire Record 441188 DOI 10.17182/hepdata.47488

In June 1996, the LEP centre-of-mass energy was raised to 161 GeV. Pair production of W bosons in e + e − collisions was observed for the first time by the LEP experiments. An integrated luminosity of 11 pb −1 was recorded in the ALEPH detector, in which WW candidate events were observed. In 6 events both Ws decay leptonically. In 16 events, one W decays leptonically, the other into hadrons. In the channel where both Ws decay into hadrons, a signal was separated from the large background by means of several multi-variate analyses. The W pair cross-section is measured to be σ WW = 4.23 ± 0.73 (stat.) ± 0.19 (syst.) pb. From this cross-section, the W mass is derived within the framework of the Standard Model: m W = 80.14 ± 0.34 (stat.) ± 0.09 (syst.) ± 0.03 (LEP energy) GeV/ c 2

0 data tables match query

Direct photon production in d+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 87 (2013) 054907, 2013.
Inspire Record 1126017 DOI 10.17182/hepdata.142660

Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at midrapidity. A wide p_T range is covered by measurements of nearly-real virtual photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield of the direct photons in d+Au collisions over the scaled p+p cross section is consistent with unity. Theoretical calculations assuming standard cold nuclear matter effects describe the data well for the entire p_T range. This indicates that the large enhancement of direct photons observed in Au+Au collisions for 1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear effects.

0 data tables match query

Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 024909, 2016.
Inspire Record 1382600 DOI 10.17182/hepdata.99053

Balance functions have been measured in terms of relative pseudorapidity ($\Delta \eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.

0 data tables match query

$\phi$ meson production in $d+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 92 (2015) 044909, 2015.
Inspire Record 1379995 DOI 10.17182/hepdata.142332

The PHENIX experiment has measured $\phi$ meson production in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV using the dimuon and dielectron decay channels. The $\phi$ meson is measured in the forward (backward) $d$-going (Au-going) direction, $1.2<y<2.2$ ($-2.2<y<-1.2$) in the transverse-momentum ($p_T$) range from 1--7 GeV/$c$, and at midrapidity $|y|<0.35$ in the $p_T$ range below 7 GeV/$c$. The $\phi$ meson invariant yields and nuclear-modification factors as a function of $p_T$, rapidity, and centrality are reported. An enhancement of $\phi$ meson production is observed in the Au-going direction, while suppression is seen in the $d$-going direction, and no modification is observed at midrapidity relative to the yield in $p$$+$$p$ collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.

0 data tables match query

Study of t anti-t production p anti-p collisions using total transverse energy

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 75 (1995) 3997, 1995.
Inspire Record 396003 DOI 10.17182/hepdata.42358

We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.

0 data tables match query

Measurement of the W pair cross section in e+ e- collisions at 172-GeV.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Lett.B 415 (1997) 435-444, 1997.
Inspire Record 446940 DOI 10.17182/hepdata.47408

The e + e − → W + W − cross section is measured in a data sample collected by ALEPH at a mean centre-of-mass energy of 172.09 GeV, corresponding to an integrated luminosity of 10.65 pb −1 . Cross sections are given for the three topologies, fully leptonic, semi-leptonic and hadronic of a W-pair decay. Under the assumption that no other decay modes are present, the W-pair cross section is measured to be 11.7±1.2 (stat.) ±0.3 (syst.) pb . The existence of the triple gauge boson vertex of the Standard Model is clearly preferred by the data. The decay branching ratio of the W boson into hadrons is measured to be B(W→hadrons) =67.7±3.1 (stat.) ±0.7 (syst.) % , allowing a determination of the CKM matrix element | V cs |=0.98±0.14(stat.)±0.03(syst.).

0 data tables match query

Observation of direct-photon collective flow in sqrt(s_NN)=200 GeV Au+Au collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 109 (2012) 122302, 2012.
Inspire Record 900818 DOI 10.17182/hepdata.144510

The second Fourier component v_2 of the azimuthal anisotropy with respect to the reaction plane was measured for direct photons at midrapidity and transverse momentum (p_T) of 1--13 GeV/c in Au+Au collisions at sqr(s_NN)=200 GeV. Previous measurements of this quantity for hadrons with p_T < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p_T > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p_T > 4 GeV/c the anisotropy for direct photons is consistent with zero, as expected if the dominant source of direct photons is initial hard scattering. However, in the p_T < 4 GeV/c region dominated by thermal photons, we find a substantial direct photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region significantly underpredict the observed v_2.

0 data tables match query

Transverse momentum dependence of meson suppression in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 82 (2010) 011902, 2010.
Inspire Record 856259 DOI 10.17182/hepdata.106472

New measurements by the PHENIX experiment at RHIC for eta production at midrapidity as a function of transverse momentum (p_T) and collision centrality in sqrt(s_NN) = 200 GeV Au+Au and p+p collisions are presented. They indicate nuclear modification factors (R_AA) that are similar both in magnitude and trend to those found in earlier pi^0 measurements. Linear fits to R_AA in the 5--20 GeV/c p_T region show that the slope is consistent with zero within two standard deviations at all centralities although a slow rise cannot be excluded. Having different statistical and systematic uncertainties the pi^0 and eta measurements are complementary at high p_T/ thus, along with the extended p_T range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.

0 data tables match query

Ground and excited charmonium state production in p+p collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 85 (2012) 092004, 2012.
Inspire Record 899065 DOI 10.17182/hepdata.141377

We report on charmonium measurements [J/psi(1S), psi'(2S), and chi_c(1P)] in p+p collisions at sqrt(s)=200 GeV. We find that the fraction of J/psi coming from the feed-down decay of psi' and chi_c in the midrapidity region ($|\eta|<0.35$) is 9.6+/-2.4% and 32+/-9%, respectively. We also report new, higher statistics p_T and rapidity dependencies of the J/psi yield via dielectron decay in the same midrapidity range and at forward rapidity (1.2<|eta|<2.4) via dimuon decay. These results are compared with measurements from other experiments and discussed in the context of current charmonium production models.

0 data tables match query