Measurements of $\phi$ meson production in relativistic heavy-ion collisions at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 064903, 2009.
Inspire Record 797805 DOI 10.17182/hepdata.99047

We present results for the measurement of $\phi$ meson production via its charged kaon decay channel $\phi \to K^+K^-$ in Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$, 130, 200 GeV, and in p+p and d+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at RHIC. The mid-rapidity ($|y|<0.5$) $\phi$ meson spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the spectra from p+p, d+Au and peripheral Au+Au collisions show power-law tails at intermediate and high transverse momenta ($p_{T}$) and are described better by Levy distributions. The constant $\phi/K^-$ yield ratio vs. beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $\phi$ production at RHIC. The $\Omega/\phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, $R_{dAu}$, for the $\phi$ meson increases above unity at intermediate $p_{T}$, similar to that for pions and protons, while $R_{AA}$ is suppressed due to jet quenching in central Au+Au collisions. Number of constituent quark scaling of both $R_{cp}$ and $v_{2}$ for the $\phi$ meson with respect to other hadrons in Au+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV at intermediate $p_{T}$ is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate $p_{T}$ region at RHIC.

0 data tables match query

Three-particle coincidence of the long range pseudorapidity correlation in high energy nucleus-nucleus collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 105 (2010) 022301, 2010.
Inspire Record 840812 DOI 10.17182/hepdata.102404

We report the first three-particle coincidence measurement in pseudorapidity ($\Delta\eta$) between a high transverse momentum ($p_{\perp}$) trigger particle and two lower $p_{\perp}$ associated particles within azimuth $\mid$$\Delta\phi$$\mid$$&lt;$0.7 in $\sqrt{{\it s}_{NN}}$ = 200 GeV $d$+Au and Au+Au collisions. Charge ordering properties are exploited to separate the jet-like component and the ridge (long-range $\Delta\eta$ correlation). The results indicate that the particles from the ridge are uncorrelated in $\Delta\eta$ not only with the trigger particle but also between themselves event-by-event. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jet-like component.

0 data tables match query

Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 054908, 2010.
Inspire Record 830676 DOI 10.17182/hepdata.98577

Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a \P-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$=200 and 62~GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.

0 data tables match query

Elliptic flow of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 88 (2013) 014902, 2013.
Inspire Record 1210464 DOI 10.17182/hepdata.102408

Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.

0 data tables match query

Transverse momentum correlations and minijet dissipation in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
J.Phys.G 34 (2007) 799-816, 2007.
Inspire Record 656302 DOI 10.17182/hepdata.102087

Measurements of two-particle correlations on transverse momentum $p_t$ for Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV are presented. Significant large-momentum-scale correlations are observed for charged primary hadrons with $0.15 \leq p_t \leq 2$ GeV/$c$ and pseudorapidity $|\eta| \leq 1.3$. Such correlations were not observed in a similar study at lower energy and are not predicted by theoretical collision models. Their direct relation to mean-$p_t$ fluctuations measured in the same angular acceptance is demonstrated. Positive correlations are observed for pairs of particles which have large $p_t$ values while negative correlations occur for pairs in which one particle has large $p_t$ and the other has much lower $p_t$. The correlation amplitudes per final state particle increase with collision centrality. The observed correlations are consistent with a scenario in which the transverse momentum of hadrons associated with initial-stage semi-hard parton scattering is dissipated by the medium to lower $p_t$.

0 data tables match query

K*0 production in Cu+Cu and Au+Au collisions at \sqrt{s_NN} = 62.4 GeV and 200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 84 (2011) 034909, 2011.
Inspire Record 857694 DOI 10.17182/hepdata.102405

We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, <pT>, are presented. The measured N(K*0)/N(K) and N(\phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production.

0 data tables match query

Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at $\sqrt{s_{NN}}=200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Chin.Phys.C 45 (2021) 044002, 2021.
Inspire Record 872067 DOI 10.17182/hepdata.102351

Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ...

0 data tables match query

Evidence from d + Au measurements for final-state suppression of high p(T) hadrons in Au + Au collisions at RHIC.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 91 (2003) 072304, 2003.
Inspire Record 621394 DOI 10.17182/hepdata.98576

We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high $p_T$) in minimum bias and central d+Au collisions at $\sqrt{s_{NN}}$=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high $p_T$ previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.

0 data tables match query

Version 2
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 704 (2011) 467-473, 2011.
Inspire Record 914546 DOI 10.17182/hepdata.102406

We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at $\sqrt{s_{NN}} = 200$ GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, $\eta/s$, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of $\eta/s$ that suggests that the produced medium has a small viscosity per unit entropy.

0 data tables match query

Hadronization geometry and charge-dependent number autocorrelations on axial momentum space in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 634 (2006) 347-355, 2006.
Inspire Record 653486 DOI 10.17182/hepdata.102088

We present the first measurements of charge-dependent correlations on angular difference variables $\eta_1 - \eta_2$ (pseudorapidity) and $\phi_1 - \phi_2$ (azimuth) for primary charged hadrons with transverse momentum $0.15 \leq p_t \leq 2$ GeV/$c$ and $|\eta| \leq 1.3$ from Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV. We observe correlation structures not predicted by theory but consistent with evolution of hadron emission geometry with increasing centrality from one-dimensional fragmentation of color strings along the beam direction to an at least two-dimensional hadronization geometry along the beam and azimuth directions of a hadron-opaque bulk medium.

0 data tables match query