Subthreshold anti-proton and K- production in heavy ion collisions

Schroter, A. ; Berdermann, E. ; Geissel, H. ; et al.
Z.Phys.A 350 (1994) 101-113, 1994.
Inspire Record 372238 DOI 10.17182/hepdata.16507

Subthreshold ¯p andK− and energeticπ− production was studied in Ne + NaF, Cu, Sn and Bi, and in Ni + Ni collisions with incident energies between 1.6 and 2 GeV/u. The measured cross sections indicate a dominant contribution of baryonic resonances. This is also consistent with a generalized scaling behaviour of the cross sections with the energy available in the collision and the energy necessary to produce particles as observed with Ne induced reactions. Deviations from scaling especially pronounced in the Ni-Ni system will be discussed in terms of absorption effects. The flat slope of the excitation function for ¯p production can be related to a reduced production threshold caused by a reduction of the antiproton mass in the dense and heated medium by about 100—150 MeV/c2. A similar in-medium mass reduction is also indicated forK− mesons. An increased ¯p reabsorption probability for the heavier systems is concluded from the comparison of the ¯p yields in Ne + NaF, Ne + Sn and Ni + Ni collisions.

0 data tables match query

Composite particle production in relativistic Au + Pt, Si + Pt, and p + Pt collisions

The E886 collaboration Saito, N. ; Bassalleck, B. ; Burger, T. ; et al.
Phys.Rev.C 49 (1994) 3211-3218, 1994.
Inspire Record 383739 DOI 10.17182/hepdata.25998

Recently, highly relativistic Au beams have become available at the Brookhaven National Laboratory, Alternating Gradient Synchrotron. Inclusive production cross sections for composite particles, d, t, He3, and He4, in 11.5A GeV/c Au+Pt collisions have been measured using a beam line spectrometer. For comparison, composite particle production was also measured in Si+Pt and p+Pt collisions at similar beam momenta per nucleon (14.6A GeV/c and 12.9 GeV/c, respectively). The projectile dependence of the production cross section for each composite particle has been fitted to Aprojα. The parameter α can be described by a single function of the mass number and the momentum per nucleon of the produced particle. Additionally, the data are well described by momentum-space coalescence. Comparisons with similar analysis of Bevalac A+A data are made. The coalescence radii extracted from momentum-space coalescence fits are used to determine reaction volumes (‘‘source size’’) within the context of the Sato-Yazaki model.

0 data tables match query

Production of high transverse momentum particles in p p collisions in the central region at the CERN ISR

The British-Scandinavian ISR collaboration Alper, B. ; Boggild, H. ; Jarlskog, G. ; et al.
Phys.Lett.B 44 (1973) 521-526, 1973.
Inspire Record 85256 DOI 10.17182/hepdata.28095

The inclusive production al all charged particles of transverse momentum p T between 1.5 and 4.4 GeV/ c at centre of mass angles 90° and 59.4° from p-p-collisions with √ s = 44 and 53 GeV has been measured. No strong energy dependence is observed for these transverse momenta.

0 data tables match query