D-meson production in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and in pp collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 94 (2016) 054908, 2016.
Inspire Record 1465513 DOI 10.17182/hepdata.73941

The production cross sections of the prompt charmed mesons D$^0$, D$^+$, D$^{*+}$ and D$_s$ were measured at mid-rapidity in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D$^0\rightarrow{\rm K}^-\pi^+$, D$^+\rightarrow{\rm K}^-\pi^+\pi^+$, D$^{*+}\rightarrow D^0\pi^+$, D$_s^+\rightarrow\phi\pi^+\rightarrow{\rm K}^-{\rm K}^+\pi^+$, and their charge conjugates. The $p_{\rm T}$-differential production cross sections were measured at mid-rapidity in the interval $1<p_{\rm T}<24$ GeV/$c$ for D$^0$, D$^+$ and D$^{*+}$ mesons and in $2<p_{\rm T}<12$ GeV/$c$ for D$_s$ mesons, using an analysis method based on the selection of decay topologies displaced from the interaction vertex. The production cross sections of the D$^0$, D$^+$ and D$^{*+}$ mesons were also measured in three $p_{\rm T}$ intervals as a function of the rapidity $y_{\rm cms}$ in the centre-of-mass system in $-1.26<y_{\rm cms}<0.34$. In addition, the prompt D$^0$ cross section was measured in pp collisions at $\sqrt{s}=7$ TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV down to $p_{\rm T}=0$ using an analysis technique that is based on the estimation and subtraction of the combinatorial background, without reconstruction of the D$^0$ decay vertex. The nuclear modification factor $R_{\rm pPb}(p_{\rm T})$, defined as the ratio of the $p_{\rm T}$-differential D-meson cross section in p-Pb collisions and that in pp collisions scaled by the mass number of the Pb nucleus, was calculated for the four D-meson species and found to be compatible with unity within experimental uncertainties. The results are compared to theoretical calculations that include cold-nuclear-matter effects and to transport model calculations incorporating the interactions of charm quarks with an expanding deconfined medium.

0 data tables match query

$\Lambda_{\rm c}^+$ production in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 04 (2018) 108, 2018.
Inspire Record 1645239 DOI 10.17182/hepdata.81727

The $p_{\rm T}$-differential production cross section of prompt $\Lambda_{\rm c}^+$ charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity. The $\Lambda_{\rm c}^+$ and ${\overline{\Lambda}}_{\rm c}^-$ were reconstructed in the hadronic decay modes $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K^-}\pi^+$, $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K_{\rm S}^0}$ and in the semileptonic channel $\Lambda_{\rm c}^+\rightarrow {\rm e^+}\nu_{\rm e}\Lambda$ (and charge conjugates). The measured values of the $\Lambda_{\rm c}^+/{\rm D_0}$ ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and $p_{\rm T}$ intervals, where the $\Lambda_{\rm c}^+$ production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the $\Lambda_{\rm c}^+$ nuclear modification factor, $R_{\rm pPb}$, is also presented. The $R_{\rm pPb}$ is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium.

0 data tables match query

Measurement of D-meson production versus multiplicity in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, J. ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 08 (2016) 078, 2016.
Inspire Record 1423072 DOI 10.17182/hepdata.73775

The measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC is reported. D$^0$, D$^+$ and D$^{*+}$ mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range $-0.96< y_{\mathrm{cms}}<0.04$ and transverse momentum interval $1<p_{\rm T}<24$ GeV/$c$. The multiplicity dependence of D-meson production is examined by either comparing yields in p-Pb collisions in different event classes, selected based on the multiplicity of produced particles or zero-degree energy, with those in pp collisions, scaled by the number of binary nucleon-nucleon collisions (nuclear modification factor); as well as by evaluating the per-event yields in p-Pb collisions in different multiplicity intervals normalised to the multiplicity-integrated ones (relative yields). The nuclear modification factors for D$^0$, D$^+$ and D$^{*+}$ are consistent with one another. The D-meson nuclear modification factors as a function of the zero-degree energy are consistent with unity within uncertainties in the measured $p_{\rm T}$ regions and event classes. The relative D-meson yields, calculated in various $p_{\rm T}$ intervals, increase as a function of the charged-particle multiplicity. The results are compared with the equivalent pp measurements at $\sqrt{s}=7$ TeV as well as with EPOS~3 calculations.

0 data tables match query

$\rm \Lambda_{c}^{+}$ production and baryon-to-meson ratios in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 127 (2021) 202301, 2021.
Inspire Record 1829739 DOI 10.17182/hepdata.114213

The prompt production of the charm baryon $\rm \Lambda_{c}^{+}$ and the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$TeV. These new measurements show a clear decrease of the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ ratio with increasing transverse momentum ($p_{\rm T}$) in both collision systems in the range $2<p_{\rm T}<12$ GeV/$c$, exhibiting similarities with the light-flavour baryon-to-meson ratios ${\rm p}/\pi$ and $\Lambda/\mathrm {K^0_S}$. At low $p_{\rm T}$, predictions that include additional colour-reconnection mechanisms beyond the leading-colour approximation; assume the existence of additional higher-mass charm-baryon states; or include hadronisation via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in $\mathrm {e^+e^-}$ and $\mathrm {e^-p}$ collisions significantly underestimate the data. The results presented in this letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies.

0 data tables match query