Search for bottom squarks in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 031101, 1999.
Inspire Record 496902 DOI 10.17182/hepdata.42120

We report on a search for bottom squarks produced in pbarp collisions at sqrt(s) = 1.8 TeV using the D0 detector at Fermilab. Bottom squarks are assumed to be produced in pairs and to decay to the lightest supersymmetric particle (LSP) and a b quark with branching fraction of 100%. The LSP is assumed to be the lightest neutralino and stable. We set limits on the production cross section as a function of bottom squark mass and LSP mass.

0 data tables match query

Measurement of the bottom quark production cross-section in 800-GeV/c proton - gold collisions

Jansen, D.M. ; Schub, M.H. ; Mishra, C.S. ; et al.
Phys.Rev.Lett. 74 (1995) 3118-3121, 1995.
Inspire Record 382417 DOI 10.17182/hepdata.42469

Using a silicon-microstrip detector array to identify secondary vertices, we have observed b→J/ψ→μ+μ− decays in 800GeV/c proton-gold interactions. The doubly differential cross section for J/ψ mesons originating from b-quark decays, assuming linear dependence on nucleon number, is d2σ/dxFdpT2=107±28±19[pb/(GeV/c)2]/nucleon at xF=0.05 and pT=1GeV/c. This measurement is compared to next-to-leading-order QCD predictions. The integrated b-quark production cross section, obtained by extrapolation over all xF and pT, is σ(pN→bb¯+X)=5.7±1.5±1.3 nb/nucleon.

0 data tables match query

Measurement of bottom quark production in 1.8-TeV p anti-p collisions using semileptonic decay muons

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.Lett. 71 (1993) 2396-2400, 1993.
Inspire Record 356237 DOI 10.17182/hepdata.19723

We present a measurement of the b-quark cross section in 1.8 TeV p-p¯ collisions recorded with the Collider Detector at Fermilab using muonic b-quark decays. In the central rapidity region (‖yb‖<1.0), the cross section is 295±21±75 nb (59±14±15 nb) for pTb>21 GeV/c (29 GeV/c). Comparisons are made to previous measurements and next-to-leading order QCD calculations.

0 data tables match query

Search for leptoquarks coupled to third-generation quarks in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 241802, 2018.
Inspire Record 1694381 DOI 10.17182/hepdata.85765

Three of the most significant measured deviations from standard model predictions, the enhanced decay rate for B $\to$ D$^{(*)}\tau\nu$, hints of lepton universality violation in B $\to$ K$^{(*)}\ell\ell$ decays, and the anomalous magnetic moment of the muon, can be explained by the existence of leptoquarks (LQs) with large couplings to third-generation quarks and masses at the TeV scale. The existence of these states can be probed at the LHC in high energy proton-proton collisions. A novel search is presented for pair production of LQs coupled to a top quark and a muon using data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, recorded by the CMS experiment. No deviation from the standard model prediction has been observed and scalar LQs decaying exclusively into t$\mu$ are excluded up to masses of 1420 GeV. The results of this search are combined with those from previous searches for LQ decays into t$\tau$ and b$\nu$, which excluded scalar LQs below masses of 900 and 1080 GeV. Vector LQs are excluded up to masses of 1190 GeV for all possible combinations of branching fractions to t$\mu$, t$\tau$ and b$\nu$. With this analysis, all relevant couplings of LQs with an electric charge of -1/3 to third-generation quarks are probed for the first time.

0 data tables match query

Small angle muon and bottom quark production in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 84 (2000) 5478-5483, 2000.
Inspire Record 503949 DOI 10.17182/hepdata.42072

This Letter describes a measurement of the muon cross section originating from b quark decay in the forward rapidity range 2.4 < y(mu) < 3.2 in pbarp collisions at sqrt(s) = 1.8 TeV. The data used in this analysis were collected by the D0 experiment at the Fermilab Tevatron. We find that NLO QCD calculations underestimate b quark production by a factor of four in the forward rapidity region. A cross section measurement using muon+jet data has been included in this version of the paper.

0 data tables match query

Search for bottom squark pair production in proton--proton collisions at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 547, 2016.
Inspire Record 1472822 DOI 10.17182/hepdata.74005

The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ($\tilde{b}_1$) is reported. The search uses 3.2 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from $b$-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95% confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric $R$-parity-conserving models in which the $\tilde{b}_1$ is the lightest squark and is assumed to decay exclusively via $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$, where $\tilde{\chi}_1^0$ is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the $\tilde{\chi}_1^0$ mass below 360 (100) GeV whilst differences in mass above 100 GeV between the $\tilde{b}_1$ and the $\tilde{\chi}_1^0$ are excluded up to a $\tilde{b}_1$ mass of 500 GeV.

0 data tables match query

Measurement of the Bottom Quark Production Cross-Section in Proton - anti-Proton Collisions at s**(1/2) = 0.63-TeV

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Phys.Lett.B 213 (1988) 405, 1988.
Inspire Record 265001 DOI 10.17182/hepdata.29892

We summarize the results obtained in the UA1 experiment on the production of bottom quarks in proton-antiproton collisions at √ s =0.63 TeV. Independent muon data samples are used to determine the bottom quark production cross section in different transverse momentum ranges from 6 to 30 GeV. A recent theoretical calculation to O(α s 3 ) of the inclusive bottom quark transverse momentum spectrum in hadronic collisions shows reasonable agreement with the data. We extrapolate the integral P T distribution to P T =0 and in rapidity to estimate the total cross section forthe production of bottom quark pairs. Assuming the shape in P T and rapidity given by the O(α s 3 ) calcultaion, we obtain σ( p p→b b +X) = 10.2 ±3.3 μb .

0 data tables match query

Search for $W' \rightarrow tb \rightarrow qqbb$ Decays in pp Collisions at $\sqrt{s}$ = 8 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 165, 2015.
Inspire Record 1309877 DOI 10.17182/hepdata.64904

A search for a massive $W'$ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in $pp$ collisions at the LHC. The dataset was taken at a centre-of-mass energy of $\sqrt{s} = 8$ TeV and corresponds to 20.3 fb$^{-1}$ of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass $W'$ bosons in the range $1.5 - 3.0$ TeV. $b$-tagging is used to identify jets originating from $b$-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95% confidence level are set on the $W' \rightarrow tb$ cross section times branching ratio ranging from $0.16$ pb to $0.33$ pb for left-handed $W'$ bosons, and ranging from $0.10$ pb to $0.21$ pb for $W'$ bosons with purely right-handed couplings. Upper limits at 95% confidence level are set on the $W'$-boson coupling to $tb$ as a function of the $W'$ mass using an effective field theory approach, which is independent of details of particular models predicting a $W'$ boson.

0 data tables match query

Measurement of the bottom quark production cross-section using semileptonic decay electrons in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.Lett. 71 (1993) 500-504, 1993.
Inspire Record 355097 DOI 10.17182/hepdata.19700

We present measurements of the bottom-quark production cross sections in pp¯ collisions at √s =1.8 TeV. From the inclusive electron production rate, we have determined the bottom-quark production cross sections to be 1010±270, 168±43, 37±10 nb for the rapidity range of ‖yb‖<1.0 and the transverse momentum ranges of pTb>15, 23, 32 GeV/c, respectively. In addition, from the associated electron-D0 production rate, we have determined the bottom-quark cross section to be 364±80(stat)±95(syst) nb for ‖yb‖<1.0 and pTb>19 GeV/c.

0 data tables match query

Measurements of the cross-sections for open charm and beauty production in gamma gamma collisions at s**(1/2) = 189-GeV to 202-GeV

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 503 (2001) 10-20, 2001.
Inspire Record 537234 DOI 10.17182/hepdata.49881

The production of c and b quarks in gamma-gamma collisions is studied with the L3 detector at LEP with 410 pb^-1 of data, collected at centre-of-mass energies from 189 GeV to 202 GeV. Hadronic final states containing c and b quarks are identified by detecting electrons or muons from their semileptonic decays. The cross sections sigma(e+e- -> e+e- c c~ X) and sigma(e+e- -> e+e- b b~ X) are measured and compared to next-to-leading order perturbative QCD calculations. The cross section of b production is measured in gamma-gamma collisions for the first time. It is in excess of the QCD prediction by a factor of three.

0 data tables match query