Version 2
Global polarization measurement in Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 76 (2007) 024915, 2007.
Inspire Record 750410 DOI 10.17182/hepdata.98581

The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.

0 data tables match query

Pion interferometry of s(NN)**(1/2) = 130-GeV Au + Au collisions at RHIC.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 082301, 2001.
Inspire Record 559861 DOI 10.17182/hepdata.93264

Two-pion correlation functions in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV have been measured by the STAR (Solenoidal Tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The HBT parameters display a weak energy dependence over a broad range in $\sqrt{s_{NN}}$.

0 data tables match query

Identified particle elliptic flow in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 182301, 2001.
Inspire Record 559609 DOI 10.17182/hepdata.93261

We report first results on elliptic flow of identified particles at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.

0 data tables match query

Mid-rapidity anti-proton to proton ratio from Au + Au collisions at s(N N)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 86 (2001) 4778, 2001.
Inspire Record 555818 DOI 10.17182/hepdata.98921

We report results on the ratio of mid-rapidity anti-proton to proton yields in Au+Au collisions at $\rts = 130$ GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of $|y|<0.5$ and 0.4 $<p_t<$ 1.0 GeV/$c$, the ratio is essentially independent of either transverse momentum or rapidity, with an average of $0.65\pm 0.01_{\rm (stat.)} \pm 0.07_{\rm (syst.)}$ for minimum bias collisions. Within errors, no strong centrality dependence is observed. The results indicate that at this RHIC energy, although the $p$-$\pb$ pair production becomes important at mid-rapidity, a significant excess of baryons over anti-baryons is still present.

0 data tables match query

Multiplicity distribution and spectra of negatively charged hadrons in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 112303, 2001.
Inspire Record 557767 DOI 10.17182/hepdata.99049

The minimum bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons (h-) in Au+Au interactions at sqrt(s_nn) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/deta|_{eta = 0} = 280 +- 1(stat)+- 20(syst), an increase per participant of 38% relative to ppbar collisions at the same energy. The mean transverse momentum is 0.508 +- 0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of pt. The pseudorapidity distribution is almost constant within |eta|<1.

0 data tables match query

Low-$p_T$ $e^{+}e^{-}$ pair production in Au$+$Au collisions at $\sqrt{s_{NN}}$ = 200 GeV and U$+$U collisions at $\sqrt{s_{NN}}$ = 193 GeV at STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 121 (2018) 132301, 2018.
Inspire Record 1676541 DOI 10.17182/hepdata.84821

We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $

35 data tables match query

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

More…

Pion, kaon, proton and anti-proton transverse momentum distributions from p + p and d + Au collisions at s(NN)**1/2 = 200-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 616 (2005) 8-16, 2005.
Inspire Record 628232 DOI 10.17182/hepdata.98859

Identified mid-rapidity particle spectra of $\pi^{\pm}$, $K^{\pm}$, and $p(\bar{p})$ from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor ($R_{dAu}$) between protons $(p+\bar{p})$ and charged hadrons ($h$) in the transverse momentum range $1.2<{p_{T}}<3.0$ GeV/c is measured to be $1.19\pm0.05$(stat)$\pm0.03$(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of $(p+\bar{p})/h$ in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.

1 data table match query

Minimum-bias ratios of protons (p+$\bar{p}$) over inclusive charged hadrons (h) at -0.5 $<$ $\eta$ 0.0 from $\sqrt{s} = 200 GeV$ p+p, d+Au and $\sqrt{s}$ = 130 GeV AuAu collisions. Errors are statistical.


Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 108 (2012) 072301, 2012.
Inspire Record 918779 DOI 10.17182/hepdata.95886

We report new STAR measurements of mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$ particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$ particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.

2 data tables match query

$K^0_S$ invariant mass spectra from Au+Au $\sqrt{s_{NN}} = 200$ GeV collisions, where $|y| < 0.5$. The uncertainties on the spectra points are statistical and systematic combined.

$\Lambda$ and $\bar{\Lambda}$ invariant mass spectra from Au+Au $\sqrt{s_{NN}} = 200$ GeV collisions, where $|y| < 0.5$. The $\Lambda$ and $\bar{\Lambda}$ yields have not been feed down subtracted from weak decays. The uncertainties on the spectra points are statistical and systematic combined.


Pion interferometry in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 71 (2005) 044906, 2005.
Inspire Record 664843 DOI 10.17182/hepdata.93263

We present a systematic analysis of two-pion interferometry in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV using the STAR detector at RHIC. We extract the HBT radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianess of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast wave parameterizations. The expansion of the source and its relation with the initial energy density distribution is studied.

0 data tables match query

Azimuthal anisotropy in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 72 (2005) 014904, 2005.
Inspire Record 660793 DOI 10.17182/hepdata.93262

The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.

0 data tables match query