Study of azimuthal anisotropy of $\Upsilon$(1S) mesons in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 850 (2024) 138518, 2024.
Inspire Record 2706679 DOI 10.17182/hepdata.131311

The azimuthal anisotropy of $\Upsilon$(1S) mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16 TeV. The $\Upsilon$(1S) mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the $\Upsilon$(1S) mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of $\Upsilon$(1S) transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for $\Upsilon$(1S) mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV.

0 data tables match query

Elliptic Flow of Heavy-Flavor Decay Electrons in Au+Au Collisions at $\sqrt{s_{_{\rm NN}}}$ = 27 and 54.4 GeV at RHIC

The STAR collaboration
Phys.Lett.B 844 (2023) 138071, 2023.
Inspire Record 2638989 DOI 10.17182/hepdata.138996

We report on new measurements of elliptic flow ($v_2$) of electrons from heavy-flavor hadron decays at mid-rapidity ($|y|<0.8$) in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 27 and 54.4 GeV from the STAR experiment. Heavy-flavor decay electrons ($e^{\rm HF}$) in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 54.4 GeV exhibit a non-zero $v_2$ in the transverse momentum ($p_{\rm T}$) region of $p_{\rm T}<$ 2 GeV/$c$ with the magnitude comparable to that at $\sqrt{s_{_{\rm NN}}}=200$ GeV. The measured $e^{\rm HF}$$v_2$ at 54.4 GeV is also consistent with the expectation of their parent charm hadron $v_2$ following number-of-constituent-quark scaling as other light and strange flavor hadrons at this energy. These suggest that charm quarks gain significant collectivity through the evolution of the QCD medium and may reach local thermal equilibrium in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=54.4$ GeV. The measured $e^{\rm HF}$$v_2$ in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=$ 27 GeV is consistent with zero within large uncertainties. The energy dependence of $v_2$ for different flavor particles ($\pi,\phi,D^{0}/e^{\rm HF}$) shows an indication of quark mass hierarchy in reaching thermalization in high-energy nuclear collisions.

0 data tables match query

Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 845 (2023) 138165, 2023.
Inspire Record 2626682 DOI 10.17182/hepdata.137849

Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.

0 data tables match query

$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

0 data tables match query

Beam Energy Dependence of Triton Production and Yield Ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$) in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 130 (2023) 202301, 2023.
Inspire Record 2152917 DOI 10.17182/hepdata.133992

We report the triton ($t$) production in mid-rapidity ($|y| <$ 0.5) Au+Au collisions at $\sqrt{s_\mathrm{NN}}$= 7.7--200 GeV measured by the STAR experiment from the first phase of the beam energy scan at the Relativistic Heavy Ion Collider (RHIC). The nuclear compound yield ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$), which is predicted to be sensitive to the fluctuation of local neutron density, is observed to decrease monotonically with increasing charged-particle multiplicity ($dN_{ch}/d\eta$) and follows a scaling behavior. The $dN_{ch}/d\eta$ dependence of the yield ratio is compared to calculations from coalescence and thermal models. Enhancements in the yield ratios relative to the coalescence baseline are observed in the 0%-10% most central collisions at 19.6 and 27 GeV, with a significance of 2.3$\sigma$ and 3.4$\sigma$, respectively, giving a combined significance of 4.1$\sigma$. The enhancements are not observed in peripheral collisions or model calculations without critical fluctuation, and decreases with a smaller $p_{T}$ acceptance. The physics implications of these results on the QCD phase structure and the production mechanism of light nuclei in heavy-ion collisions are discussed.

0 data tables match query

Measurements of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ Lifetimes and Yields in Au+Au Collisions in the High Baryon Density Region

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 202301, 2022.
Inspire Record 1946124 DOI 10.17182/hepdata.114372

We report precision measurements of hypernuclei ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ lifetimes obtained from Au+Au collisions at \snn = 3.0 GeV and 7.2 GeV collected by the STAR experiment at RHIC, and the first measurement of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ mid-rapidity yields in Au+Au collisions at \snn = 3.0 GeV. ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be $221\pm15(\rm stat.)\pm19(\rm syst.)$ ps for ${}^3_\Lambda \rm{H}$ and $218\pm6(\rm stat.)\pm13(\rm syst.)$ ps for ${}^4_\Lambda \rm{H}$. The $p_T$-integrated yields of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of ${}^4_\Lambda \rm{H}$ is different for 0--10% and 10--50% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the ${}^3_\Lambda \rm{H}$ yield well, while underestimating the ${}^4_\Lambda \rm{H}$ yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.

0 data tables match query

Cumulants and Correlation Functions of Net-proton, Proton and Antiproton Multiplicity Distributions in Au+Au Collisions at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.C 104 (2021) 024902, 2021.
Inspire Record 1843941 DOI 10.17182/hepdata.101356

We report a systematic measurement of cumulants, $C_{n}$, for net-proton, proton and antiproton multiplicity distributions, and correlation functions, $\kappa_n$, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at $\sqrt{s_{\mathrm {NN}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The $C_{n}$ and $\kappa_n$ are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, $y$, and transverse momentum, $p_{T}$. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the BNL Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity ($|y| <$ 0.5) and transverse momentum 0.4 $<$$p_{\rm T}$$<$ 2.0 GeV/$c$, using the STAR detector at RHIC. We observe a non-monotonic energy dependence ($\sqrt{s_{\mathrm {NN}}}$ = 7.7 -- 62.4 GeV) of the net-proton $C_{4}$/$C_{2}$ with the significance of 3.1$\sigma$ for the 0-5% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with $\sqrt{s_{\mathrm {NN}}}$. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, $\kappa_2$, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, $\kappa_4$, of protons plays a role in determining the energy dependence of proton $C_4/C_1$ below 19.6 GeV, which cannot be understood by the effect of baryon number conservation.

0 data tables match query

Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 534, 2020.
Inspire Record 1759853 DOI 10.17182/hepdata.88289

Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.

0 data tables match query

Version 2
Strange hadron production in pp and pPb collisions at $\sqrt{s_\mathrm{NN}}= $ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 101 (2020) 064906, 2020.
Inspire Record 1758692 DOI 10.17182/hepdata.88283

The transverse momentum ($p_\mathrm{T}$) distributions of $\Lambda$, $\Xi^-$, and $\Omega^-$ baryons, their antiparticles, and K$^0_\mathrm{S}$ mesons are measured in proton-proton (pp) and proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV over a broad rapidity range. The data, corresponding to integrated luminosities of 40.2 nb$^{-1}$ and 15.6 $\mu$b$^{-1}$ for pp and pPb collisions, respectively, were collected by the CMS experiment. The nuclear modification factor $R_\mathrm{pPb}$, defined as the ratio of the particle yield in pPb collisions and a scaled pp reference, is measured for each particle. A strong dependence on particle species is observed in the $p_\mathrm{T}$ range from 2 to 7 GeV, where $R_\mathrm{pPb}$ for K$^0_\mathrm{S}$ is consistent with unity, while an enhancement ordered by strangeness content and/or particle mass is observed for the three baryons. In pPb collisions, the strange hadron production is asymmetric about the nucleon-nucleon center-of-mass rapidity. Enhancements, which depend on the particle type, are observed in the direction of the Pb beam. The results are compared to predictions from EPOS LHC, which includes parametrized radial flow. The model is in qualitative agreement with the $R_\mathrm{pPb}$ data, but fails to describe the dependence on particle species in the yield asymmetries measured away from mid-rapidity in pPb collisions.

0 data tables match query

Bulk Properties of the System Formed in Au+Au Collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 101 (2020) 024905, 2020.
Inspire Record 1748776 DOI 10.17182/hepdata.103857

We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($\eta$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. The results at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $\mu_B$, which is of the order of 100 MeV,between $\sqrt{s_{\mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.

0 data tables match query