Underlying Event properties in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 04 (2020) 192, 2020.
Inspire Record 1762350 DOI 10.17182/hepdata.94414

This article reports measurements characterizing the Underlying Event (UE) associated with hard scatterings at midrapidity in pp collisions at $\sqrt{s}=13$ TeV. The hard scatterings are identified by the leading particle, the charged particle with the highest transverse momentum ($p_{\rm T}^{\rm leading}$) in the event. Charged-particle number and summed transverse-momentum densities are measured in different azimuthal regions defined with respect to the leading particle direction: Toward, Transverse, and Away. The Toward and Away regions contain the fragmentation products of the hard scatterings in addition to the UE contribution, whereas particles in the Transverse region are expected to originate predominantly from the UE. The study is performed as a function of $p_{\rm T}^{\rm leading}$ with three different $p_{\rm T}$ thresholds for the associated particles, $p_{\rm T}^{\rm min} >$ 0.15, 0.5, and 1.0 GeV/$c$. The charged-particle density in the Transverse region rises steeply for low values of $p_{\rm T}^{\rm leading}$ and reaches a plateau. The results confirm the trend that the charged-particle density in the Transverse region shows a stronger increase with $\sqrt{s}$ than the inclusive charged-particle density at midrapidity. The UE activity is increased by approximately 20% when going from 7 to 13 TeV. The plateau in the Transverse region ($5 < p_{\rm T}^{\rm leading} < ~ 40$ GeV/$c$ ) is further characterized by the probability distribution of its charged-particle multiplicity normalized to its average value (relative transverse activity, $R_{T}$) and the mean transverse momentum as a function of $R_{T}$. Experimental results are compared to model calculations using PYTHIA 8 and EPOS LHC. The overall agreement between models and data is within 30%. These measurements provide new insights on the interplay between hard scatterings and the associated UE in pp collisions.

0 data tables match query

First measurement of large area jet transverse momentum spectra in heavy-ion collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 284, 2021.
Inspire Record 1848440 DOI 10.17182/hepdata.93881

Jet production in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV is studied with the CMS detector at the LHC, using PbPb and pp data samples corresponding to integrated luminosities of 404 $\mu$b$^{-1}$ and 27.4 pb$^{-1}$, respectively. Jets with different areas are reconstructed using the anti-$k_\mathrm{T}$ algorithm by varying the distance parameter $R$. The measurements are performed using jets with transverse momenta ($p_\mathrm{T}$) greater than 200 GeV and in a pseudorapidity range of $|\eta|$$\lt$ 2. To reveal the medium modification of the jet spectra in PbPb collisions, the properly normalized ratio of spectra from PbPb and pp data is used to extract jet nuclear modification factors as functions of the PbPb collision centrality, $p_\mathrm{T}$ and, for the first time, as a function of $R$ up to 1.0. For the most central collisions, a strong suppression is observed for high-$p_\mathrm{T}$ jets reconstructed with all distance parameters, implying that a significant amount of jet energy is scattered to large angles. The dependence of jet suppression on $R$ is expected to be sensitive to both the jet energy loss mechanism and the medium response, and so the data are compared to several modern event generators and analytic calculations. The models considered do not fully reproduce the data.

0 data tables match query

First Measurement of Hadronic Event Shapes in $pp$ Collisions at $\sqrt {s}=7$ TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Lett.B 699 (2011) 48-67, 2011.
Inspire Record 886332 DOI 10.17182/hepdata.63817

Hadronic event shapes have been measured in proton-proton collisions at sqrt(s)=7 TeV, with a data sample collected with the CMS detector at the LHC. The sample corresponds to an integrated luminosity of 3.2 inverse picobarns. Event-shape distributions, corrected for detector response, are compared with five models of QCD multijet production.

0 data tables match query

Measurement of dijet azimuthal decorrelation in pp collisions at $\sqrt{s}=8\,\mathrm{TeV} $

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 536, 2016.
Inspire Record 1421646 DOI 10.17182/hepdata.74207

A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 inverse femtobarns. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.

0 data tables match query

Underlying event measurements in $p+p$ collisions at $\sqrt s=$ 200 GeV at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 101 (2020) 052004, 2020.
Inspire Record 1771348 DOI 10.17182/hepdata.95537

Particle production sensitive to non-factorizable and non-perturbative processes that contribute to the underlying event associated with a high transverse momentum ($p_{T}$) jet in proton+proton collisions at $\sqrt{s}$=200 GeV is studied with the STAR detector. Each event is divided into three regions based on the azimuthal angle with respect to the highest-$p_{T}$ jet direction: in the leading jet direction ("Toward"), opposite to the leading jet ("Away"), and perpendicular to the leading jet ("Transverse"). In the Transverse region, the average charged particle density is found to be between 0.4 and 0.6 and the mean transverse momentum, $\langle p_{T}\rangle$, between 0.5-0.7 GeV/$c$ for particles with $p_{T}$$>$0.2 GeV/$c$ at mid-pseudorapidity ($|\eta|$$<$1) and jet $p_{T}$$>$15 GeV/$c$. Both average particle density and $\langle p_{T}\rangle$ depend weakly on the leading jet $p_{T}$. Closer inspection of the Transverse region hints that contributions to the underlying event from initial- and final-state radiation are significantly smaller in these collisions than at the higher energies, up to 13 TeV, recorded at the LHC. Underlying event measurements associated with a high-$p_{T}$ jet will contribute to our understanding of QCD processes at hard and soft scales at RHIC energies, as well as provide constraints to modeling of underlying event dynamics.

0 data tables match query

Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.D 91 (2015) 112012, 2015.
Inspire Record 1328629 DOI 10.17182/hepdata.68515

The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s}=7$ TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity region using the sequential recombination $k_{\rm T}$ and anti-$k_{\rm T}$ as well as the SISCone jet finding algorithms with several resolution parameters in the range $R=0.2$ to $0.6$. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum ($p_{\rm T}$) interval $20<p_{\rm T}^{\rm jet,ch}<100$ GeV/$c$. They are also consistent with prior measurements carried out at the LHC by the ATLAS collaboration. The jet charged particle multiplicity rises monotonically with increasing jet $p_{\rm T}$, in qualitative agreement with prior observations at lower energies. The transverse profiles of leading jets are investigated using radial momentum density distributions as well as distributions of the average radius containing 80% ($\langle R_{\rm 80} \rangle$) of the reconstructed jet $p_{\rm T}$. The fragmentation of leading jets with $R=0.4$ using scaled $p_{\rm T}$ spectra of the jet constituents is studied. The measurements are compared to model calculations from event generators (PYTHIA, PHOJET, HERWIG). The measured radial density distributions and $\langle R_{\rm 80} \rangle$ distributions are well described by the PYTHIA model (tune Perugia-2011). The fragmentation distributions are better described by HERWIG.

0 data tables match query

Measurement of the Inclusive Jet Cross Section in $pp$ Collisions at $\sqrt{s}=7$ TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 107 (2011) 132001, 2011.
Inspire Record 902309 DOI 10.17182/hepdata.57963

The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the LHC using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 inverse picobarns. The measurement is made for jet transverse momenta in the range 18-1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet pT ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions.

0 data tables match query

Charged jet cross section and fragmentation in proton-proton collisions at $\sqrt{s}$ = 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.D 99 (2019) 012016, 2019.
Inspire Record 1693308 DOI 10.17182/hepdata.86229

We report the differential charged jet cross section and jet fragmentation distributions measured with the ALICE detector in proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 7 TeV. Jets with pseudo-rapidity $\left| \eta \right| < {\rm 0.5}$ are reconstructed from charged particles using the anti-$k_{\rm T}$ jet finding algorithm with a resolution parameter $R$ = 0.4. The jet cross section is measured in the transverse momentum interval 5 $\leq p_{\rm T}^{\rm ch \; jet} <$ 100 GeV/$c$. Jet fragmentation is studied measuring the scaled transverse momentum spectra of the charged constituents of jets in four intervals of jet transverse momentum between 5 GeV/$c$ and 30 GeV/$c$. The measurements are compared to calculations from the PYTHIA model as well as next-to-leading order perturbative QCD calculations with POWHEG + PYTHIA8. The charged jet cross section is described by POWHEG for the entire measured range of $p_{\rm T}^{\rm ch \; jet}$. For $p_{\rm T}^{\rm ch \; jet}$ $>$ 40 GeV/$c$, the PYTHIA calculations also agree with the measured charged jet cross section. PYTHIA6 simulations describe the fragmentation distributions to 15%. Larger discrepancies are observed for PYTHIA8.

0 data tables match query

Measurement of the inclusive jet cross section in pp collisions at $\sqrt{s} = 2.76\,\text {TeV}$

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 265, 2016.
Inspire Record 1410826 DOI 10.17182/hepdata.72839

The double-differential inclusive jet cross section is measured as a function of jet transverse momentum pT and absolute rapidity y, using proton-proton collision data collected with the CMS experiment at the LHC, at a center-of-mass energy of sqrt(s) = 2.76 TeV and corresponding to an integrated luminosity of 5.43 inverse picoboarns. Jets are reconstructed within the pT range of 74 to 592 GeV and the rapidity range |y| < 3.0. The reconstructed jet spectrum is corrected for detector resolution. The measurements are compared to the theoretical prediction at next-to-leading-order QCD using different sets of parton distribution functions. This inclusive cross section measurement explores a new kinematic region and is consistent with QCD predictions.

0 data tables match query

Measurement of D* Mesons in Jets from p+p Collisions at s**(1/2) = 200-GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 79 (2009) 112006, 2009.
Inspire Record 810426 DOI 10.17182/hepdata.45861

We report the measurement of charged $D^*$ mesons in inclusive jets produced in proton-proton collisions at a center of mass energy $\sqrt{s}$ = 200 GeV with the STAR experiment at RHIC. For $D^{*}$ mesons with fractional momenta $0.2 < z < 0.5$ in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be $N(D^{*+}+D^{*-})/N(\mathrm{jet}) = 0.015 \pm 0.008 (\mathrm{stat}) \pm 0.007 (\mathrm{sys})$. This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.

0 data tables match query