Version 2
Measurement of the Bottom contribution to non-photonic electron production in $p+p$ collisions at $\sqrt{s} $=200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 202301, 2010.
Inspire Record 860571 DOI 10.17182/hepdata.101352

The contribution of $B$ meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in $p+p$ collisions at $\sqrt{s} =$ 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted $B$ decay contribution is approximately 50% at a transverse momentum of $p_{T} \geq 5$ GeV/$c$. These measurements constrain the nuclear modification factor for electrons from $B$ and $D$ meson decays. The result indicates that $B$ meson production in heavy ion collisions is also suppressed at high $p_{T}$.

0 data tables match query

Femtoscopy of pp collisions at sqrt{s}=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Rev.D 84 (2011) 112004, 2011.
Inspire Record 884741 DOI 10.17182/hepdata.74220

We report on the high statistics two-pion correlation functions from pp collisions at $\sqrt{s}=0.9$ TeV and $\sqrt{s}$=7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar at the two collision energies. A three-dimensional femtoscopic analysis shows an increase of the emission zone with increasing event multiplicity as well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronounced as multiplicity increases. This suggests the development of space-momentum correlations, at least for collisions producing a high multiplicity of particles. We consider these trends in the context of previous femtoscopic studies in high-energy hadron and heavy-ion collisions, and discuss possible underlying physics mechanisms. Detailed analysis of the correlation reveals an exponential shape in the outward and longitudinal directions, while the sideward remains a Gaussian. This is interpreted as a result of a significant contribution of strongly decaying resonances to the emission region shape. Significant non-femtoscopic correlations are observed, and are argued to be the consequence of "mini-jet"-like structures extending to low $p_{\rm T}$. They are well reproduced by the Monte-Carlo generators and seen also in $\pi^+\pi^-$ correlations.

0 data tables match query

Strong constraints on jet quenching in centrality-dependent $p$+Pb collisions at 5.02 TeV from ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.Lett. 131 (2023) 072301, 2023.
Inspire Record 2090791 DOI 10.17182/hepdata.130943

Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including $pp$ and $p$+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb$^{-1}$ of $p$+Pb and 3.6 pb$^{-1}$ of $pp$ collisions at 5.02 TeV. The yields of charged hadrons with $p_\mathrm{T}^\mathrm{ch} >0.5$ GeV near and opposite in azimuth to jets with $p_\mathrm{T}^\mathrm{jet} > 30$ or $60$ GeV, and the ratios of these yields between $p$+Pb and $pp$ collisions, $I_{p\mathrm{Pb}}$, are reported. The collision centrality of $p$+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The $I_{p\mathrm{Pb}}$ values are consistent with unity within a few percent for hadrons with $p_\mathrm{T}^\mathrm{ch} >4$ GeV at all centralities. These data provide new, strong constraints which preclude almost any parton energy loss in central $p$+Pb collisions.

0 data tables match query

Search for the $Z\gamma$ decay mode of new high-mass resonances in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 848 (2024) 138394, 2024.
Inspire Record 2695554 DOI 10.17182/hepdata.141854

This letter presents a search for narrow, high-mass resonances in the $Z\gamma$ final state with the $Z$ boson decaying into a pair of electrons or muons. The $\sqrt{s}=13$ TeV $pp$ collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb$^{-1}$. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into $Z\gamma$. For spin-0 resonances produced via gluon-gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon-gluon fusion (or quark-antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV.

0 data tables match query

Multiplicity dependence of light-flavor hadron production in pp collisions at $\sqrt{s}$ = 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 024906, 2019.
Inspire Record 1684320 DOI 10.17182/hepdata.84282

Comprehensive results on the production of unidentified charged particles, $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{K}^{0}_{S}$, $\rm{K}$*(892)$^{0}$, $\rm{p}$, $\overline{\rm{p}}$, $\phi$(1020), $\Lambda$, $\overline{\Lambda}$, $\Xi^{-}$, $\overline{\Xi}^{+}$, $\Omega^{-}$ and $\overline{\Omega}^{+}$ hadrons in proton-proton (pp) collisions at $\sqrt{s}$ = 7 TeV at midrapidity ($|y| < 0.5$) as a function of charged-particle multiplicity density are presented. In order to avoid auto-correlation biases, the actual transverse momentum ($p_{\rm{T}}$) spectra of the particles under study and the event activity are measured in different rapidity windows. In the highest multiplicity class, the charged-particle density reaches about 3.5 times the value measured in inelastic collisions. While the yield of protons normalized to pions remains approximately constant as a function of multiplicity, the corresponding ratios of strange hadrons to pions show a significant enhancement that increases with increasing strangeness content. Furthermore, all identified particle to pion ratios are shown to depend solely on charged-particle multiplicity density, regardless of system type and collision energy. The evolution of the spectral shapes with multiplicity and hadron mass shows patterns that are similar to those observed in p-Pb and Pb-Pb collisions at LHC energies. The obtained $p_{\rm{T}}$ distributions and yields are compared to expectations from QCD-based pp event generators as well as to predictions from thermal and hydrodynamic models. These comparisons indicate that traces of a collective, equilibrated system are already present in high-multiplicity pp collisions.

0 data tables match query

Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 569, 2017.
Inspire Record 1507157 DOI 10.17182/hepdata.78803

Two-particle angular correlations were measured in pp collisions at $\sqrt{s} = 7$ TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon-baryon and anti-baryon--anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an open question.

0 data tables match query