Inclusive Jet Production in Photon-Photon Collisions at $\sqrt{s_{ee}}$ from 189 to 209 GeV

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 658 (2008) 185-192, 2008.
Inspire Record 754316 DOI 10.17182/hepdata.48798

Inclusive jet production (e+e- -> e+e- +jet+X) is studied in collisions of quasi-real photons radiated by the LEP beams at e+e- centre-of-mass energies sqrt see from 189 to 209 GeV. Jets are reconstructed using the kp jet algorithm. The inclusive differential cross-section is measured as a function of the jet transverse momentum, ptjet, in the range 5 <ptjet < 40 GeV for pseudo-rapidities, etaj, in the range -1.5 < etaj < 1.5. The results are compared to predictions of perturbative QCD in next-to-leading order in the strong coupling constant.

0 data tables match query

Version 2
Measurement of charm production at central rapidity in proton-proton collisions at sqrt(s) = 7 TeV

The ALICE collaboration Abelev, B. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
JHEP 01 (2012) 128, 2012.
Inspire Record 944757 DOI 10.17182/hepdata.58524

The $p_{\rm T}$-differential inclusive production cross sections of the prompt charmed mesons $D^0$, $D^+$, and $D^{*+}$ in the rapidity range |y|<0.5 were measured in proton-proton collisions at $\sqrt{s} = 7$ TeV at the LHC using the ALICE detector. Reconstructing the decays $D^0\rightarrow K^-\pi^+$, $D^+\rightarrow K^-\pi^+\pi^+$, $D^{*+}\rightarrow D^0\pi^+$, and their charge conjugates, about 8,400 $D^0$, 2,900 $D^+$, and 2,600 $D^{*+}$ mesons with 1<$p_{\rm T}$<24 GeV/$c$ were counted, after selection cuts, in a data sample of 3.14x10$^8$ events collected with a minimum-bias trigger (integrated luminosity $L_{\rm int}$ = 5/nb). The results are described within uncertainties by predictions based on perturbative QCD.

0 data tables match query

Measurement of the $\eta_c(1S)$ production cross-section in $pp$ collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Eur.Phys.J.C 80 (2020) 191, 2020.
Inspire Record 1763898 DOI 10.17182/hepdata.90457

Using a data sample corresponding to an integrated luminosity of $2.0\,fb^{-1}$, collected by the LHCb experiment, the production of the $\eta_c(1S)$ state in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13 \text{ TeV}$ is studied in the rapidity range ${2.0 < y < 4.5}$ and in the transverse momentum range ${6.5 < p_{T} < 14.0\text{ GeV}}$. The cross-section for prompt production of $\eta_c(1S)$ mesons relative to that of the $J/\psi$ meson is measured using the ${p\bar{p}}$ decay mode and is found to be ${\sigma_{\eta_c(1S)}/\sigma_{J/\psi} = 1.69 \pm 0.15 \pm 0.10 \pm 0.18}$. The quoted uncertainties are, in order, statistical, systematic and due to uncertainties on the branching fractions of the ${J/\psi\to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The prompt $\eta_c(1S)$ production cross-section is determined to be ${\sigma_{\eta_c(1S)} = 1.26 \pm 0.11\pm 0.08 \pm 0.14 \,\mu b}$, where the last uncertainty includes that on the ${J/\psi}$ meson cross-section. The ratio of the branching fractions of $b$-hadron decays to the $\eta_c(1S)$ and ${J/\psi}$ states is measured to be ${\mathcal{B}_{b\to\eta_c X}/\mathcal{B}_{b\to J/\psi X} = 0.48 \pm 0.03 \pm 0.03 \pm 0.05}$, where the last uncertainty is due to those on the branching fractions of the ${J/\psi \to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The difference between the ${J/\psi}$ and $\eta_c(1S)$ masses is also determined to be ${113.0 \pm 0.7 \pm 0.1\text{ MeV}}$, which is the most precise single measurement of this quantity to date.

0 data tables match query

Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

0 data tables match query

Measurement of forward neutral pion transverse momentum spectra for $\sqrt{s}$ = 7TeV proton-proton collisions at LHC

The LHCf collaboration Adriani, O. ; Bonechi, L. ; Bongi, M. ; et al.
Phys.Rev.D 86 (2012) 092001, 2012.
Inspire Record 1115479 DOI 10.17182/hepdata.59925

The inclusive production rate of neutral pions in the rapidity range greater than $y=8.9$ has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC $\sqrt{s}=7$\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.

0 data tables match query

Studies of W boson plus jets production in p\bar{p} collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 88 (2013) 092001, 2013.
Inspire Record 1221252 DOI 10.17182/hepdata.61813

We present a comprehensive analysis of inclusive W(\to e\nu)+n-jet (n\geq 1,2,3,4) production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Tevatron collider using a 3.7 fb^{-1} dataset collected by the D0 detector. Differential cross sections are presented as a function of the jet rapidities (y), lepton transverse momentum (p_T) and pseudorapidity (\eta), the scalar sum of the transverse energies of the W boson and all jets (H_T), leading dijet p_T and invariant mass, dijet rapidity separations for a variety of jet pairings for p_T-ordered and angular-ordered jets, dijet opening angle, dijet azimuthal angular separations for p_T-ordered and angular-ordered jets, and W boson transverse momentum. The mean number of jets in an event containing a W boson is measured as a function of H_T, and as a function of the rapidity separations between the two highest-p_T jets and between the most widely separated jets in rapidity. Finally, the probability for third-jet emission in events containing a W boson and at least two jets is studied by measuring the fraction of events in the inclusive W+2-jet sample that contain a third jet over a p_T threshold. The analysis employs a regularized singular value decomposition technique to accurately correct for detector effects and for the presence of backgrounds. The corrected data are compared to particle level next-to-leading order perturbative QCD predictions, predictions from all-order resummation approaches, and a variety of leading-order and matrix-element plus parton-shower event generators. Regions of the phase space where there is agreement or disagreement with the data are discussed for the different models tested.

0 data tables match query

Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at $\sqrt{s} = 2.76$ TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.D 91 (2015) 012001, 2015.
Inspire Record 1296860 DOI 10.17182/hepdata.64030

The $p_{\rm T}$-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at mid-rapidity in proton-proton collisions at $\sqrt{s} = 2.76$ TeV in the transverse momentum range 0.5 < $p_{\rm T}$ < 12 GeV/$c$ with the ALICE detector at the LHC. The analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties.

0 data tables match query

Low-mass vector-meson production at forward rapidity in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 052002, 2014.
Inspire Record 1296835 DOI 10.17182/hepdata.64159

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\omega$, $\rho$, and $\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $d\sigma/dy(\omega+\rho\rightarrow\mu\mu) = 80 \pm 6 \mbox{(stat)} \pm 12 \mbox{(syst)}$ nb and $d\sigma/dy(\phi\rightarrow\mu\mu) = 27 \pm 3 \mbox{(stat)} \pm 4 \mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.

0 data tables match query

Centrality dependence of charged jet production in p-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
CERN-EP-2016-052, 2016.
Inspire Record 1427026 DOI 10.17182/hepdata.72903

Measurements of charged jet production as a function of centrality are presented for p-Pb collisions recorded at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon-nucleon collisions is determined based on the particle production in the Pb-going rapidity region. Jets have been reconstructed in the central rapidity region from charged particles with the anti-$k_{\rm T}$ algorithm for resolution parameters $R = 0.2$ and $R = 0.4$ in the transverse momentum range 20 to 120 GeV/$c$. The reconstructed jet momentum and yields have been corrected for detector effects and underlying-event background. In the five centrality bins considered, the charged jet production in p-Pb collisions is consistent with the production expected from binary scaling from pp collisions. The ratio of jet yields reconstructed with the two different resolution parameters is also independent of the centrality selection, demonstrating the absence of major modifications of the radial jet structure in the reported centrality classes.

0 data tables match query

Measurements of four-lepton production in $pp$ collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 753 (2016) 552-572, 2016.
Inspire Record 1394865 DOI 10.17182/hepdata.18593

The four-lepton ($4\ell$, $\ell = e, \mu$) production cross section is measured in the mass range from 80 to 1000 GeV using 20.3 fb$^{-1}$ of data in $pp$ collisions at $\sqrt{s}=8$ TeV collected with the ATLAS detector at the LHC. The $4\ell$ events are produced in the decays of resonant $Z$ and Higgs bosons and the non-resonant $ZZ$ continuum originating from $q\bar q$, $gg$, and $qg$ initial states. A total of 476 signal candidate events are observed with a background expectation of $26.2 \pm 3.6$ events, enabling the measurement of the integrated cross section and the differential cross section as a function of the invariant mass and transverse momentum of the four-lepton system. In the mass range above $180$ GeV, assuming the theoretical constraint on the $q\bar q$ production cross section calculated with perturbative NNLO QCD and NLO electroweak corrections, the signal strength of the gluon-fusion component relative to its leading-order prediction is determined to be $\mu_{gg}=2.4 \pm 1.0 (stat.) \pm 0.5 (syst.)\pm 0.8 (theory)$.

0 data tables match query