Longitudinal Double-Spin Asymmetries for Dijet Production at Intermediate Pseudorapidity in Polarized $pp$ Collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 032011, 2018.
Inspire Record 1674714 DOI 10.17182/hepdata.130944

We present the first measurements of the longitudinal double-spin asymmetry $A_{LL}$ for dijets with at least one jet reconstructed within the pseudorapidity range $0.8 < \eta < 1.8$. The dijets were measured in polarized $pp$ collisions at a center-of-mass energy $\sqrt{s}$ = 200 GeV. Values for $A_{LL}$ are determined for several distinct event topologies, defined by the jet pseudorapidities, and span a range of parton momentum fraction $x$ down to $x \sim$ 0.01. The measured asymmetries are found to be consistent with the predictions of global analyses that incorporate the results of previous RHIC measurements. They will provide new constraints on $\Delta g(x)$ in this poorly constrained region when included in future global analyses.

0 data tables match query

Measurements of Proton High Order Cumulants in 3 GeV Au+Au Collisions and Implications for the QCD Critical Point

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.Lett. 128 (2022) 202303, 2022.
Inspire Record 1981670 DOI 10.17182/hepdata.115559

We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity ($y$) and transverse momentum ($p_{\rm T}$) within $-0.5 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$. In the most central 0--5% collisions, a proton cumulant ratio is measured to be $C_4/C_2=-0.85 \pm 0.09 ~(\rm stat.) \pm 0.82 ~(\rm syst.)$, which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our $C_4/C_2$ in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in $C_4/C_2$ is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3 GeV.

0 data tables match query

Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.D 103 (2021) L091103, 2021.
Inspire Record 1850855 DOI 10.17182/hepdata.104836

We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s}=200\,\mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $\Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x \simeq 0.05$ to $x \simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $\Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $\sqrt{s}=200\,\mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $\Delta g(x,Q^2)$ is positive for $x > 0.05$.

0 data tables match query

Version 2
Strange hadron production in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 7.7, 11.5, 19.6, 27, and 39 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 034909, 2020.
Inspire Record 1738953 DOI 10.17182/hepdata.94313

We present STAR measurements of strange hadron ($\mathrm{K}^{0}_{\mathrm S}$, $\Lambda$, $\overline{\Lambda}$, $\Xi^-$, $\overline{\Xi}^+$, $\Omega^-$, $\overline{\Omega}^+$, and $\phi$) production at mid-rapidity ($|y| < 0.5$) in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 7.7 - 39 GeV from the Beam Energy Scan Program at the Relativistic Heavy Ion Collider (RHIC). Transverse momentum spectra, averaged transverse mass, and the overall integrated yields of these strange hadrons are presented versus the centrality and collision energy. Antibaryon-to-baryon ratios ($\overline{\Lambda}$/$\Lambda$, $\overline{\Xi}^+$/$\Xi^-$, $\overline{\Omega}^+$/$\Omega^-$) are presented as well, and used to test a thermal statistical model and to extract the temperature normalized strangeness and baryon chemical potentials at hadronic freeze-out ($\mu_{B}/T_{\rm ch}$ and $\mu_{S}/T_{\rm ch}$) in central collisions. Strange baryon-to-pion ratios are compared to various model predictions in central collisions for all energies. The nuclear modification factors ($R_{\textrm{CP}}$) and antibaryon-to-meson ratios as a function of transverse momentum are presented for all collision energies. The $\mathrm{K}^{0}_{\mathrm S}$$R_{\textrm{CP}}$ shows no suppression for $p_{\rm T}$ up to 3.5 $\mathrm{GeV} / c$ at energies of 7.7 and 11.5 GeV. The $\overline{\Lambda}$/$\mathrm{K}^{0}_{\mathrm S}$ ratio also shows baryon-to-meson enhancement at intermediate $p_{\rm T}$ ($\approx$2.5 $\mathrm{GeV} / c$) in central collisions at energies above 19.6 GeV. Both observations suggest that there is likely a change of the underlying strange quark dynamics at collision energies below 19.6 GeV.

0 data tables match query

Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $\sqrt{s}=510$ GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.D 105 (2022) 092011, 2022.
Inspire Record 1949588 DOI 10.17182/hepdata.114778

We report measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for inclusive jet and dijet production in polarized proton-proton collisions at midrapidity and center-of-mass energy $\sqrt{s}$ = 510 GeV, using the high luminosity data sample collected by the STAR experiment in 2013. These measurements complement and improve the precision of previous STAR measurements at the same center-of-mass energy that probe the polarized gluon distribution function at partonic momentum fraction 0.015 $\lesssim x \lesssim$ 0.25. The dijet asymmetries are separated into four jet-pair topologies, which provide further constraints on the $x$ dependence of the polarized gluon distribution function. These measurements are in agreement with previous STAR measurements and with predictions from current next-to-leading order global analyses. They provide more precise data at low dijet invariant mass that will better constraint the shape of the polarized gluon distribution function of the proton.

0 data tables match query

Differential measurements of jet substructure and partonic energy loss in Au+Au collisions at $\sqrt {S_{NN}}$ =200 GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 105 (2022) 044906, 2022.
Inspire Record 1925052 DOI 10.17182/hepdata.113875

The STAR collaboration presents jet substructure measurements related to both the momentum fraction and the opening angle within jets in \pp and \AuAu collisions at \sqrtsn $= 200$ GeV. The substructure observables include SoftDrop groomed momentum fraction (\zg), groomed jet radius (\rg), and subjet momentum fraction (\zsj) and opening angle (\tsj). The latter observable is introduced for the first time. Fully corrected subjet measurements are presented for \pp collisions and are compared to leading order Monte Carlo models. The subjet \tsj~distributions reflect the jets leading opening angle and are utilized as a proxy for the resolution scale of the medium in \AuAu collisions. We compare data from \AuAu collisions to those from \pp which are embedded in minimum-bias \AuAu events in order to include the effects of detector smearing and the heavy-ion collision underlying event. The subjet observables are shown to be more robust to the background than \zg~and \rg. We observe no significant modifications of the subjet observables within the two highest-energy, back-to-back jets, resulting in a distribution of opening angles and the splittings that are vacuum-like. We also report measurements of the differential di-jet momentum imbalance ($A_{\rm{J}}$) for jets of varying \tsj. We find no qualitative differences in energy loss signatures for varying angular scales in the range $0.1 < $\tsj $ < 0.3$, leading to the possible interpretation that energy loss in this population of high momentum di-jet pairs, is due to soft medium-induced gluon radiation from a single color-charge as it traverses the medium.

0 data tables match query

Measurement of inclusive J/$\psi$ polarization in p+p collisions at $\sqrt{s}$ = 200 GeV by the STAR experiment

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 102 (2020) 092009, 2020.
Inspire Record 1806120 DOI 10.17182/hepdata.95543

We report on new measurements of inclusive J/$\psi$ polarization at mid-rapidity in p+p collisions at $\sqrt{s}$ = 200 GeV by the STAR experiment at RHIC. The polarization parameters, $\lambda_\theta$, $\lambda_\phi$, and $\lambda_{\theta\phi}$, are measured as a function of transverse momentum ($p_T$) in both the Helicity and Collins-Soper (CS) reference frames within $p_T< 10$ GeV/$C$. Except for $\lambda_\theta$ in the CS frame at the highest measured $p_T$, all three polarization parameters are consistent with 0 in both reference frames without any strong $p_T$ dependence. Several model calculations are compared with data, and the one using the Color Glass Condensate effective field theory coupled with non-relativistic QCD gives the best overall description of the experimental results, even though other models cannot be ruled out due to experimental uncertainties.

0 data tables match query

Measurement of the $b$-quark production cross-section in 7 and 13 TeV $pp$ collisions

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Phys.Rev.Lett. 118 (2017) 052002, 2017.
Inspire Record 1504058 DOI 10.17182/hepdata.79130

Measurements of the cross-section for producing \bquark quarks in the reaction $pp\to b\bar{b} X$ are reported in 7 and 13 TeV collisions at the LHC as a function of the pseudorapidity $\eta$ in the range $2<\eta<5$ covered by the acceptance of the LHCb experiment. The measurements are done using semileptonic decays of $b$-flavored hadrons decaying into a ground-state charmed hadron in association with a muon. The cross-sections in the covered $\eta$ range are $72.0\pm 0.3\pm6.8~\mu$b and $144\pm 1\pm 21~\mu$b for 7 and 13 TeV. The ratio is $2.00\pm0.02\pm0.26$, where the quoted uncertainties are statistical and systematic, respectively. The agreement with theoretical expectation is good at 7 TeV, but differs somewhat at 13 TeV. The measured ratio of cross-sections is larger at lower $\eta$ than the model prediction.

0 data tables match query

Measurement of $Z$ boson production cross-section in $pp$ collisions at $\sqrt{s} = 5.02$ TeV

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
JHEP 02 (2024) 070, 2024.
Inspire Record 2690798 DOI 10.17182/hepdata.147274

The first measurement of the $Z$ boson production cross-section at centre-of-mass energy $\sqrt{s} = 5.02\,$TeV in the forward region is reported, using $pp$ collision data collected by the LHCb experiment in year 2017, corresponding to an integrated luminosity of $100 \pm 2\,\rm{pb^{-1}}$. The production cross-section is measured for final-state muons in the pseudorapidity range $2.0<\eta<4.5$ with transverse momentum $p_{\rm{T}}> 20\,\rm{GeV/}\it{c}$. The integrated cross-section is determined to be \[ \sigma_{Z \rightarrow \mu^{+}\mu^{-}} = 39.6 \pm 0.7\,(\rm{stat}) \pm 0.6\,(\rm{syst}) \pm 0.8\,(\rm{lumi}) \ \rm{pb} \] for the di-muon invariant mass in the range $60<M_{\mu\mu}<120\,\rm{GeV/}\it{c^{2}}$. This result and the differential cross-section results are in good agreement with theoretical predictions at next-to-next-to-leading order in the strong coupling. Based on a previous LHCb measurement of the $Z$ boson production cross-section in $p$Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV, the nuclear modification factor $R_{p\rm{Pb}}$ is measured for the first time at this energy. The measured values are $1.2^{+0.5}_{-0.3}\,(\rm{stat}) \pm 0.1\,(\rm{syst})$ in the forward region ($1.53<y^*_{\mu}<4.03$) and $3.6^{+1.6}_{-0.9}\,(\rm{stat}) \pm 0.2\,(\rm{syst})$ in the backward region ($-4.97<y^*_{\mu}<-2.47$), where $y^*_{\mu}$ represents the muon rapidity in the centre-of-mass frame.

0 data tables match query

Measurement of the Transverse Momentum Distribution of W Bosons in pp Collisions at sqrt(s) = 7 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 85 (2012) 012005, 2012.
Inspire Record 925932 DOI 10.17182/hepdata.57986

This paper describes a measurement of the W boson transverse momentum distribution using ATLAS pp collision data from the 2010 run of the LHC at sqrt(s) = 7 TeV, corresponding to an integrated luminosity of about 31 pb^-1. Events from both W -> e nu and W -> mu nu are used, and the transverse momentum of the W candidates is measured through the energy deposition in the calorimeter from the recoil of the W. The resulting distributions are unfolded to obtain the normalized differential cross sections as a function of the W boson transverse momentum. We present results for pTW < 300 GeV in the electron and muon channels as well as for their combination, and compare the combined results to the predictions of perturbative QCD and a selection of event generators.

0 data tables match query