Simultaneous multiplicity and forward energy characterization of particle spectra in Au + Au collisions at 11.6-A-GeV/c.

The E-802 collaboration Ahle, L. ; Akiba, Y. ; Ashktorab, K. ; et al.
Phys.Rev.C 59 (1999) 2173-2188, 1999.
Inspire Record 501648 DOI 10.17182/hepdata.4988

In this paper Au+Au collisions at 11.6A GeV/c are characterized by two global observables: the energy measured near zero degrees (EZCAL) and the total event multiplicity. Particle spectra are measured for different event classes that are defined in a two-dimensional grid of both global observables. For moderately central events (σ/σint<12%) the proton dN/dy distributions do not depend on EZCAL but only on the event multiplicity. In contrast the shape of the proton transverse spectra shows little dependence on the event multiplicity. The change in the proton dN/dy distributions suggests that different conditions are formed in the collision for different event classes. These event classes are studied for signals of new physics by measuring pion and kaon spectra and yields. In the event classes doubly selected on EZCAL and multiplicity there is no indication of any unusual pion or kaon yields, spectra, or K/π ratio even in the events with extreme multiplicity.

0 data tables match query

Charged particle multiplicity near mid-rapidity in central Au + Au collisions at S**(1/2) = 56-A/GeV and 130-A/GeV

The PHOBOS collaboration Back, B.B. ; Baker, M.D. ; Barton, D.S. ; et al.
Phys.Rev.Lett. 85 (2000) 3100-3104, 2000.
Inspire Record 530501 DOI 10.17182/hepdata.41732

We present the first measurement of pseudorapidity densities of primary charged particles near mid-rapidity in Au+Au collisions at $\sqrt{s} =$ 56 and 130 AGeV. For the most central collisions, we find the charged particle pseudorapidity density to be $dN/d\eta |_{|\eta|<1} = 408 \pm 12 {(stat)} \pm 30 {(syst)}$ at 56 AGeV and $555 \pm 12 {(stat)} \pm 35 {(syst)}$ at 130 AGeV, values that are higher than any previously observed in nuclear collisions. Compared to proton-antiproton collisions, our data show an increase in the pseudorapidity density per participant by more than 40% at the higher energy.

0 data tables match query