Version 2
Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at LHC energies

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 93 (2016) 024917, 2016.
Inspire Record 1380491 DOI 10.17182/hepdata.72547

The production of (anti-)deuteron and (anti-)$^{3}$He nuclei in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV has been studied using the ALICE detector at the LHC. The spectra exhibit a significant hardening with increasing centrality. Combined blast-wave fits of several particles support the interpretation that this behavior is caused by an increase of radial flow. The integrated particle yields are discussed in the context of coalescence and thermal-statistical model expectations. The particle ratios, $^3$He/d and $^3$He/p, in Pb-Pb collisions are found to be in agreement with a common chemical freeze-out temperature of $T_{\rm chem} \approx 156$ MeV. These ratios do not vary with centrality which is in agreement with the thermal-statistical model. In a coalescence approach, it excludes models in which nucleus production is proportional to the particle multiplicity and favors those in which it is proportional to the particle density instead. In addition, the observation of 31 anti-tritons in Pb-Pb collisions is reported. For comparison, the deuteron spectrum in pp collisions at $\sqrt{s} = 7$ TeV is also presented. While the p/$\pi$ ratio is similar in pp and Pb-Pb collisions, the d/p ratio in pp collisions is found to be lower by a factor of 2.2 than in Pb-Pb collisions.

0 data tables match query

Transverse momentum dependence of D-meson production in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 03 (2016) 081, 2016.
Inspire Record 1394580 DOI 10.17182/hepdata.72510

The production of prompt charmed mesons D$^0$, D$^+$ and D$^{*+}$, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the centre-of-mass energy per nucleon pair, $\sqrt{s_{\rm NN}}$, of 2.76 TeV. The production yields for rapidity $|y|<0.5$ are presented as a function of transverse momentum, $p_{\rm T}$, in the interval 1-36 GeV/$c$ for the centrality class 0-10% and in the interval 1-16 GeV/$c$ for the centrality class 30-50%. The nuclear modification factor $R_{\rm AA}$ was computed using a proton-proton reference at $\sqrt{s} = 2.76$ TeV, based on measurements at $\sqrt{s} = 7$ TeV and on theoretical calculations. A maximum suppression by a factor of 5-6 with respect to binary-scaled pp yields is observed for the most central collisions at $p_{\rm T}$ of about 10 GeV/$c$. A suppression by a factor of about 2-3 persists at the highest $p_{\rm T}$ covered by the measurements. At low $p_{\rm T}$ (1-3 GeV/$c$), the $R_{\rm AA}$ has large uncertainties that span the range 0.35 (factor of about 3 suppression) to 1 (no suppression). In all $p_{\rm T}$ intervals, the $R_{\rm AA}$ is larger in the 30-50% centrality class compared to central collisions. The D-meson $R_{\rm AA}$ is also compared with that of charged pions and, at large $p_{\rm T}$, charged hadrons, and with model calculations.

0 data tables match query

Measurement of D$_s^+$ production and nuclear modification factor in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 03 (2016) 082, 2016.
Inspire Record 1394675 DOI 10.17182/hepdata.71277

The production of prompt D$_s^+$ mesons was measured for the first time in collisions of heavy nuclei with the ALICE detector at the LHC. The analysis was performed on a data sample of Pb-Pb collisions at a centre-of-mass energy per nucleon pair, $\sqrt{s_{\rm NN}}$, of 2.76 TeV in two different centrality classes, namely 0-10% and 20-50%. D$_s^+$ mesons and their antiparticles were reconstructed at mid-rapidity from their hadronic decay channel D$_s^+\rightarrow\phi\pi^+$, with $\phi\rightarrow$K$^-$K$^+$, in the transverse momentum intervals $4< p_{\rm T}<12$ GeV/$c$ and $6< p_{\rm T}<12$ GeV/$c$ for the 0-10% and 20-50% centrality classes, respectively. The nuclear modification factor $R_{\rm AA}$ was computed by comparing the $p_{\rm T}$-differential production yields in Pb-Pb collisions to those in proton-proton (pp) collisions at the same energy. This pp reference was obtained using the cross section measured at $\sqrt{s}= 7$ TeV and scaled to $\sqrt{s}= 2.76$ TeV. The $R_{\rm AA}$ of D$_s^+$ mesons was compared to that of non-strange D mesons in the 10% most central Pb-Pb collisions. At high $p_{\rm T}$ ($8< p_{\rm T}<12$ GeV/$c$) a suppression of the D$_s^+$-meson yield by a factor of about three, compatible within uncertainties with that of non-strange D mesons, is observed. At lower $p_{\rm T}$ ($4< p_{\rm T}<8$ GeV/$c$) the values of the D$_s^+$-meson $R_{\rm AA}$ are larger than those of non-strange D mesons, although compatible within uncertainties. The production ratios D$_s^+$/D$^0$ and D$_s^+$\D$^+$ were also measured in Pb-Pb collisions and compared to their values in proton-proton collisions.

0 data tables match query