Search for Top Quark in e+ e- Collisions at s**(1/2) = 52-GeV

The TOPAZ collaboration Adachi, I. ; Aihara, H. ; Dijkstra, H.B. ; et al.
Phys.Rev.Lett. 60 (1988) 97, 1988.
Inspire Record 251830 DOI 10.17182/hepdata.20141

We searched for possible signatures of top-quark production in 508 e+e− hadronic annihilation events collected at s=52 GeV by the TOPAZ detector at the KEK e+e− collider TRISTAN. The observed hadronic cross section and shape of hadronic events are consistent with the standard-model predictions without top quarks. A lower limit (95% confidence level) on the mass of the lightest top meson is set at 25.8 GeV.

0 data tables match query

Search for a narrow resonance in e+ e- collisions between E(cm) = 58-GeV and 60-GeV

The TOPAZ collaboration Abe, K. ; Adachi, I. ; Awa, S. ; et al.
Phys.Lett.B 304 (1993) 373-380, 1993.
Inspire Record 353845 DOI 10.17182/hepdata.28918

We carried out the energy scan between E CM = 58 and 60 GeV at the TRISTAN e + e − collider to search for the possible narrow resonance suggested by the L3 experiment at LEP. The total cross sections are measured for γγ, multihadron, e + e − and μ + μ − production at ten energy points covering this energy range almost uniformly. The results are in good agreement with the Standard Model predictions, and 95% confidence level upper limits are set to Γ ee × BR of the hypothetical scalar and tensor resonances.

0 data tables match query

A Study of single photon production in e+ e- collisions at s**(1/2) = 58-GeV with the TOPAZ detector at TRISTAN

The TOPAZ collaboration Abe, T. ; Fujii, K. ; Sugiyama, A. ; et al.
Phys.Lett.B 361 (1995) 199-206, 1995.
Inspire Record 406593 DOI 10.17182/hepdata.28440

We report a study of single photon production in e + e − collisions at s =58 GeV with the TOPAZ detector at TRISTAN. From data corresponding to an integrated luminosity of 213 pb −1 , 5 single photon candidates remained after event selection, which can be compared with the expected 3.1 ν ν γ and 2.8 background events. These results exclude the selectron mass below 47.2 GeV at the 90% confidence level, if e ̃ L and e ̃ R are mass-degenerate and the photino is massless. When combined with results from other experiments, this limit improves to 75.0 GeV.

0 data tables match query