J/psi production and nuclear effects in p-Pb collisions at sqrt(sNN)=5.02 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 02 (2014) 073, 2014.
Inspire Record 1251898 DOI 10.17182/hepdata.64892

Inclusive J/$\psi$ production has been studied with the ALICE detector in p-Pb collisions at the nucleon-nucleon center of mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV at the CERN LHC. The measurement is performed in the center of mass rapidity domains $2.03<y_{\rm cms}<3.53$ and $-4.46<y_{\rm cms}<-2.96$, down to zero transverse momentum, studying the $\mu^+\mu^-$ decay mode. In this paper, the J/$\psi$ production cross section and the nuclear modification factor $R_{\rm pPb}$ for the rapidities under study are presented. While at forward rapidity, corresponding to the proton direction, a suppression of the J/$\psi$ yield with respect to binary-scaled pp collisions is observed, in the backward region no suppression is present. The ratio of the forward and backward yields is also measured differentially in rapidity and transverse momentum. Theoretical predictions based on nuclear shadowing, as well as on models including, in addition, a contribution from partonic energy loss, are in fair agreement with the experimental results.

0 data tables match query

$J/\psi$ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 109 (2012) 072301, 2012.
Inspire Record 1088222 DOI 10.17182/hepdata.60297

The ALICE experiment has measured the inclusive J/$\psi$ production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}} } = 2.76$ TeV down to zero transverse momentum in the rapidity range $2.5 < y < 4$. A suppression of the inclusive J/$\psi$ yield in Pb-Pb is observed with respect to the one measured in pp collisions scaled by the number of binary nucleon-nucleon collisions. The nuclear modification factor, integrated over the 0-80% most central collisions, is $0.545 \pm 0.032 \rm{(stat.)} \pm 0.083 \rm{(syst.)}$ and does not exhibit a significant dependence on the collision centrality. These features appear significantly different from measurements at lower collision energies. Models including J/$\psi$ production from charm quarks in a deconfined partonic phase can describe our data.

0 data tables match query

Centrality, rapidity and transverse momentum dependence of J/Psi suppression in Pb-Pb collisions at sqrt(sNN)=2.76TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 734 (2014) 314-327, 2014.
Inspire Record 1263062 DOI 10.17182/hepdata.63191

The inclusive $J/\psi$ nuclear modification factor $R_{\rm AA}$ in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$=2.76 TeV has been measured by ALICE as a function of centrality in the e$^+$e$^-$ decay channel at mid-rapidity $|y|<0.8$ and as a function of centrality, transverse momentum and rapidity in the $\mu^{+}\mu^{-}$ decay channel at forward-rapidity $2.5<y<4$.The $J/\psi$ yields measured in Pb-Pb are suppressed compared to those in pp collisions scaled by the number of binary collisions. The $R_{\rm AA}$ integrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is $0.72\pm0.06$ (stat.) $\pm0.10$ (syst.) at mid-rapidity and $0.57 \pm 0.01$ (stat.) $\pm0.09$ (syst.) at forward-rapidity. At low transverse momentum, significantly larger values of $R_{\rm AA}$ are measured at forward-rapidity compared to measurements at lower energy. These features suggest that a contribution to the $J/\psi$ yield originates from charm quarks (re)combination in the deconfined partonic medium.

0 data tables match query

Exclusive $\mathrm{J/}\psi$ photoproduction off protons in ultra-peripheral p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 113 (2014) 232504, 2014.
Inspire Record 1303903 DOI 10.17182/hepdata.64378

We present the first measurement at the LHC of exclusive J/$\psi$ photoproduction off protons, in ultra-peripheral proton-lead collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. Events are selected with a dimuon pair produced either in the rapidity interval, in the laboratory frame, $2.5<y<4$ (p-Pb) or $-3.6<y<-2.6$ (Pb--p), and no other particles observed in the ALICE acceptance. The measured cross sections $\sigma (\gamma + {\rm p} \rightarrow J/\psi + {\rm p})$ are 33.2 $\pm$ 2.2 (stat) $\pm$ 3.1 (syst) $\pm$ 0.7 (theo) nb in p-Pb and 284 $\pm$ 36 (stat) $^{+27}_{-32}$ (syst) $\pm$ 26 (theo) nb in Pb-p collisions. We measure this process up to about 700 GeV in the $\gamma {\rm p}$ centre-of-mass, which is a factor of two larger than the highest energy studied at HERA. The data are consistent with a power law dependence of the $J/\psi$ photoproduction cross section in $\gamma {\rm p}$ energies from about 20 to 700 GeV, or equivalently, from Bjorken-$x$ between $\sim 2\times 10^{-2}$ to $\sim 2\times 10^{-5}$, thus indicating no significant change in the gluon density behaviour of the proton between HERA and LHC energies.

0 data tables match query

Exclusive and dissociative J/$\psi$ photoproduction, and exclusive dimuon production, in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.D 108 (2023) 112004, 2023.
Inspire Record 2654315 DOI 10.17182/hepdata.144875

The ALICE Collaboration reports three measurements in ultra-peripheral proton$-$lead collisions at forward rapidity. The exclusive two-photon process \ggmm and the exclusive photoproduction of J/$\psi$ are studied. J/$\psi$ photoproduction with proton dissociation is measured for the first time at a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to 2.5 GeV/$c^2$ agrees with leading order quantum electrodynamics calculations. The exclusive and dissociative cross sections for J/$\psi$ photoproductions are measured for photon$-$proton centre-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results.

0 data tables match query

Measurement of prompt J/psi and beauty hadron production cross sections at mid-rapidity in pp collisions at sort(s)= 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 11 (2012) 065, 2012.
Inspire Record 1116251 DOI 10.17182/hepdata.60001

The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at sqrt{s}=7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L_int = 5.6nb-1. The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p_t>1.3 GeV/c and rapidity |y|<0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the Psi(2S) and Csi_c resonances, is sigma_prompt-J/psi(pt > 1.3 GeV/c, |y| < 0.9) = 8.3 +- 0.8(stat.) +- 1.1(syst.) + 1.5 - 1.4(syst. pol.) micro barn. The cross section for the production of b-hadrons decaying to J/psi with p_t>1.3 GeV/c and |y|<0.9 is sigma_{J/psi<-h_B} = 1.46 +- 0.38(stat.) + 0.26 -0.32(syst.) micro barn. The results are compared to QCD model predictions. The shape of the p_t and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b-bbar pair total cross section and dsigma/dy at mid-rapidity.

0 data tables match query

Energy dependence of exclusive $J/\psi$ photoproduction off protons in ultra-peripheral p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 79 (2019) 402, 2019.
Inspire Record 1693305 DOI 10.17182/hepdata.89306

The ALICE Collaboration has measured the energy dependence of exclusive photoproduction of $J/\psi$ vector mesons off proton targets in ultra-peripheral p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV. The e$^+$e$^-$ and $\mu^+\mu^-$ decay channels are used to measure the cross section as a function of the rapidity of the $J/\psi$ in the range $-2.5 < y < 2.7$, corresponding to an energy in the $\gamma$p centre-of-mass in the interval $40 < W_{\gamma\mathrm{p}}<550$ GeV. The measurements, which are consistent with a power law dependence of the exclusive $J/\psi$ photoproduction cross section, are compared to previous results from HERA and the LHC and to several theoretical models. They are found to be compatible with previous measurements.

0 data tables match query

Coherent $J/\psi$ and $\psi'$ photoproduction at midrapidity in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 712, 2021.
Inspire Record 1840601 DOI 10.17182/hepdata.110176

The coherent photoproduction of $\rm{J/\psi}$ and $\rm{\psi'}$ mesons was measured in ultra-peripheral Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV with the ALICE detector. Charmonia are detected in the central rapidity region for events where the hadronic interactions are strongly suppressed. The $\rm{J/\psi}$ is reconstructed using the dilepton ($l^{+} l^{-}$) and proton-antiproton decay channels, while for the $\rm{\psi'}$, the dilepton and the $l^{+} l^{-} \pi^{+} \pi^{-}$ decay channels are studied. The analysis is based on an event sample corresponding to an integrated luminosity of about 233 ${\mu b}^{-1}$. The results are compared with theoretical models for coherent $\rm{J/\psi}$ and $\rm{\psi'}$ photoproduction. The coherent cross section is found to be in a good agreement with models incorporating moderate nuclear gluon shadowing of about 0.65 at a Bjorken-$x$ of around $6\times 10^{-4}$, such as the EPS09 parametrization, however none of the models is able to fully describe the rapidity dependence of the coherent $\rm{J/\psi}$ cross section including ALICE measurements at forward rapidity. The ratio of $\rm{\psi'}$ to $\rm{J/\psi}$ coherent photoproduction cross sections was also measured and found to be consistent with the one for photoproduction off protons.

0 data tables match query

Inclusive J/psi production in pp collisions at sqrt(s) = 2.76 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 718 (2012) 295-306, 2012.
Inspire Record 1094079 DOI 10.17182/hepdata.62231

The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L^e_int=1.1 nb^-1 and L^mu_int=19.9 nb^-1, and the corresponding signal statistics are N_J/psi^e+e-=59 +/- 14 and N_J/psi^mu+mu-=1364 +/- 53. We present dsigma_J/psi/dy for the two rapidity regions under study and, for the forward-y range, d^2sigma_J/psi/dydp_t in the transverse momentum domain 0<p_t<8 GeV/c. The results are compared with previously published results at sqrt(s)=7 TeV and with theoretical calculations.

0 data tables match query

Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

0 data tables match query