J/psi polarization in pp collisions at sqrt(s)=7 TeV

The ALICE collaboration Abelev, Betty ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 108 (2012) 082001, 2012.
Inspire Record 944730 DOI 10.17182/hepdata.73005

We have studied J/psi production in pp collisions at $\sqrt{s}=7$ TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/$\psi$ polarization parameters $\lambda_{\theta}$ and $\lambda_\phi$ were obtained. The study was performed in the kinematic region 2.5<y<4, 2<$p_{\rm T}$<8 GeV/$c$, in the helicity and Collins-Soper reference frames. In both frames, the polarization parameters are compatible with zero, within uncertainties.

0 data tables match query

Underlying Event properties in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 04 (2020) 192, 2020.
Inspire Record 1762350 DOI 10.17182/hepdata.94414

This article reports measurements characterizing the Underlying Event (UE) associated with hard scatterings at midrapidity in pp collisions at $\sqrt{s}=13$ TeV. The hard scatterings are identified by the leading particle, the charged particle with the highest transverse momentum ($p_{\rm T}^{\rm leading}$) in the event. Charged-particle number and summed transverse-momentum densities are measured in different azimuthal regions defined with respect to the leading particle direction: Toward, Transverse, and Away. The Toward and Away regions contain the fragmentation products of the hard scatterings in addition to the UE contribution, whereas particles in the Transverse region are expected to originate predominantly from the UE. The study is performed as a function of $p_{\rm T}^{\rm leading}$ with three different $p_{\rm T}$ thresholds for the associated particles, $p_{\rm T}^{\rm min} >$ 0.15, 0.5, and 1.0 GeV/$c$. The charged-particle density in the Transverse region rises steeply for low values of $p_{\rm T}^{\rm leading}$ and reaches a plateau. The results confirm the trend that the charged-particle density in the Transverse region shows a stronger increase with $\sqrt{s}$ than the inclusive charged-particle density at midrapidity. The UE activity is increased by approximately 20% when going from 7 to 13 TeV. The plateau in the Transverse region ($5 < p_{\rm T}^{\rm leading} < ~ 40$ GeV/$c$ ) is further characterized by the probability distribution of its charged-particle multiplicity normalized to its average value (relative transverse activity, $R_{T}$) and the mean transverse momentum as a function of $R_{T}$. Experimental results are compared to model calculations using PYTHIA 8 and EPOS LHC. The overall agreement between models and data is within 30%. These measurements provide new insights on the interplay between hard scatterings and the associated UE in pp collisions.

0 data tables match query

Net-Charge Fluctuations in Pb-Pb collisions at \surds_NN = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 110 (2013) 152301, 2013.
Inspire Record 1123802 DOI 10.17182/hepdata.60476

We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at LHC are smaller compared to the measurements at the Relativistic heavy Ion Collider (RHIC), and as such, closer to what has been theoretically predicted for the formation of Quark-Gluon Plasma (QGP).

0 data tables match query

Centrality determination of Pb-Pb collisions at sqrt(sNN) = 2.76 TeV with ALICE

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 88 (2013) 044909, 2013.
Inspire Record 1215085 DOI 10.17182/hepdata.66916

This publication describes the methods used to measure the centrality of inelastic Pb-Pb collisions at a center-of-mass energy of 2.76 TeV per colliding nucleon pair with ALICE. The centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density, because it is directly related to the initial overlap region of the colliding nuclei. Geometrical properties of the collision, such as the number of participating nucleons and number of binary nucleon-nucleon collisions, are deduced from a Glauber model with a sharp impact parameter selection, and shown to be consistent with those extracted from the data. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.

0 data tables match query

Multiplicity dependence of two-particle azimuthal correlations in pp collisions at the LHC

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 09 (2013) 049, 2013.
Inspire Record 1241570 DOI 10.17182/hepdata.62319

We present the measurements of particle pair yields per trigger particle obtained from di-hadron azimuthal correlations in pp collisions at $\sqrt{s} = 0.9$, $2.76$, and $7$ TeV recorded with the ALICE detector. The yields are studied as a function of the charged particle multiplicity. Taken together with the single particle yields the pair yields provide information about parton fragmentation at low transverse momenta, as well as on the contribution of multiple parton interactions to particle production. Data are compared to calculations using the PYTHIA6, PYTHIA8, and PHOJET event generators.

0 data tables match query

Multi-strange baryon production in pp collisions at $\sqrt{s}$ = 7 TeV with ALICE

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 712 (2012) 309-318, 2012.
Inspire Record 1097057 DOI 10.17182/hepdata.60477

A measurement of the multi-strange $\Xi^-$ and $\Omega^-$ baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton-proton collisions at centre of mass energy of 7 TeV. The transverse momentum ($p_{\rm T}$) distributions were studied at mid-rapidity (|y| < 0.5) in the range of 0.6 < $p_{\rm T}$ < 8.5 GeV/$c$ for $\Xi^-$ and $\Xi^+$ baryons, and in the range of 0.8 < $p_{\rm T}$ < 5 GeV/$c$ for $\Omega^-$ and $\Omega^+$. Baryons and antibaryons were measured as separate particles and we find that the baryon to antibaryon ratio of both particle species is consistent with unity over the entire range of the measurement. The statistical precision of the current LHC data has allowed us to measure a difference between the mean $p_{\rm T}$ of $\Xi^-$ ($\Xi^+$) and $\Omega^-$ ($\Omega^+$). Particle yields, mean $p_{\rm T}$, and the spectra in the intermediate $p_{\rm T}$ range are not well described by the PYTHIA Perugia 2011 tune Monte Carlo event generator, which has been tuned to reproduce the early LHC data. The discrepancy is largest for $\Omega^-$ ($\Omega^+$). This PYTHIA tune approaches the $p_{\rm T}$ spectra of $\Xi^-$ and $\Xi^+$ baryons below $p_{\rm T}$ < 0.85 GeV/$c$ and describes the $\Xi^-$ and $\Xi^+$ spectra above $p_{\rm T}$ > 6.0 GeV/$c$. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of ($\Omega^{-}+\Omega^+)/(\Xi^-+\Xi^+)$ as a function of transverse mass.

0 data tables match query

Measurement of charged jet cross section in $pp$ collisions at ${\sqrt{s}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Rev.D 100 (2019) 092004, 2019.
Inspire Record 1733689 DOI 10.17182/hepdata.91239

The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of $5<p_\mathrm{T}<100\ \mathrm{GeV}/c$ in pp collisions at the center-of-mass energy of $\sqrt{s} = 5.02\ \mathrm{TeV}$ with the ALICE detector. The jets are reconstructed using the anti-$k_\mathrm{T}$ algorithm with resolution parameters $R=0.2$, $0.3$, $0.4$, and $0.6$ in the pseudorapidity range $|\eta|< 0.9-R$. The charged jet cross sections are compared with the leading order (LO) and to next-to-leading order (NLO) perturbative Quantum ChromoDynamics (pQCD) calculations. It was found that the NLO calculations agree better with the measurements. The cross section ratios for different resolution parameters were also measured. These ratios increase from low $p_\mathrm{T}$ to high $p_\mathrm{T}$ and saturate at high $p_\mathrm{T}$, indicating that jet collimation is larger at high $p_\mathrm{T}$ than at low $p_\mathrm{T}$. These results provide a precision test of pQCD predictions and serve as a baseline for the measurement in Pb$-$Pb collisions at the same energy to quantify the effects of the hot and dense medium created in heavy-ion collisions at the LHC.

0 data tables match query

Underlying event measurements in $p$+$p$ collisions at $\sqrt{s}= 200 $ GeV at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 101 (2020) 052004, 2020.
Inspire Record 1771348 DOI 10.17182/hepdata.95537

Particle production sensitive to non-factorizable and non-perturbative processes that contribute to the underlying event associated with a high transverse momentum ($p_{T}$) jet in proton+proton collisions at $\sqrt{s}$=200 GeV is studied with the STAR detector. Each event is divided into three regions based on the azimuthal angle with respect to the highest-$p_{T}$ jet direction: in the leading jet direction ("Toward"), opposite to the leading jet ("Away"), and perpendicular to the leading jet ("Transverse"). In the Transverse region, the average charged particle density is found to be between 0.4 and 0.6 and the mean transverse momentum, $\langle p_{T}\rangle$, between 0.5-0.7 GeV/$c$ for particles with $p_{T}$$>$0.2 GeV/$c$ at mid-pseudorapidity ($|\eta|$$<$1) and jet $p_{T}$$>$15 GeV/$c$. Both average particle density and $\langle p_{T}\rangle$ depend weakly on the leading jet $p_{T}$. Closer inspection of the Transverse region hints that contributions to the underlying event from initial- and final-state radiation are significantly smaller in these collisions than at the higher energies, up to 13 TeV, recorded at the LHC. Underlying event measurements associated with a high-$p_{T}$ jet will contribute to our understanding of QCD processes at hard and soft scales at RHIC energies, as well as provide constraints to modeling of underlying event dynamics.

0 data tables match query

D_s meson production at central rapidity in proton--proton collisions at sqrt(s) = 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 718 (2012) 279-294, 2012.
Inspire Record 1126963 DOI 10.17182/hepdata.62306

The $p_{\rm T}$-differential inclusive production cross section of the prompt charm-strange meson $\rm D_s^+$ in the rapidity range $|y|<0.5$ was measured in proton-proton collisions at $\sqrt{s}=7$ TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of $2.98 \times 10^8$ events collected with a minimum-bias trigger. The corresponding integrated luminosity is $L_{\rm int}=4.8$/nb. Reconstructing the decay ${\rm D_s^{+}\to \phi\pi^+}$, with $\phi\to {\rm K}^-{\rm K}^+$, and its charge conjugate, about 480 ${\rm D_s^{\pm}}$ mesons were counted, after selection cuts, in the transverse momentum range $2<p_{\rm T}<12$ Gev/$c$. The results are compared with predictions from models based on perturbative QCD. The ratios of the cross sections of four D meson species (namely ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$ and ${\rm D_s^+}$) were determined both as a function of $p_{\rm T}$ and integrated over $p_{\rm T}$ after extrapolating to full $p_{\rm T}$ range, together with the strangeness suppression factor in charm fragmentation. The obtained values are found to be compatible within uncertainties with those measured by other experiments in $\rm e^+e^-$, ep and pp interactions at various centre-of-mass energies.

0 data tables match query

Charged jet cross section and fragmentation in proton-proton collisions at $\sqrt{s}$ = 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.D 99 (2019) 012016, 2019.
Inspire Record 1693308 DOI 10.17182/hepdata.86229

We report the differential charged jet cross section and jet fragmentation distributions measured with the ALICE detector in proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 7 TeV. Jets with pseudo-rapidity $\left| \eta \right| < {\rm 0.5}$ are reconstructed from charged particles using the anti-$k_{\rm T}$ jet finding algorithm with a resolution parameter $R$ = 0.4. The jet cross section is measured in the transverse momentum interval 5 $\leq p_{\rm T}^{\rm ch \; jet} <$ 100 GeV/$c$. Jet fragmentation is studied measuring the scaled transverse momentum spectra of the charged constituents of jets in four intervals of jet transverse momentum between 5 GeV/$c$ and 30 GeV/$c$. The measurements are compared to calculations from the PYTHIA model as well as next-to-leading order perturbative QCD calculations with POWHEG + PYTHIA8. The charged jet cross section is described by POWHEG for the entire measured range of $p_{\rm T}^{\rm ch \; jet}$. For $p_{\rm T}^{\rm ch \; jet}$ $>$ 40 GeV/$c$, the PYTHIA calculations also agree with the measured charged jet cross section. PYTHIA6 simulations describe the fragmentation distributions to 15%. Larger discrepancies are observed for PYTHIA8.

0 data tables match query