Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

0 data tables match query

Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using $\sqrt(s) = 13$ TeV proton$-$proton collisions recorded by ATLAS in Run 2 of the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 10 (2020) 062, 2020.
Inspire Record 1811596 DOI 10.17182/hepdata.93733

Results of a search for new particles decaying into eight or more jets and moderate missing transverse momentum are presented. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. The selection rejects events containing isolated electrons or muons, and makes requirements according to the number of $b$-tagged jets and the scalar sum of masses of large-radius jets. The search extends previous analyses both in using a larger dataset and by employing improved jet and missing transverse momentum reconstruction methods which more cleanly separate signal from background processes. No evidence for physics beyond the Standard Model is found. The results are interpreted in the context of supersymmetry-inspired simplified models, significantly extending the limits on the gluino mass in those models. In particular, limits on the gluino mass are set at 2 TeV when the lightest neutralino is nearly massless in a model assuming a two-step cascade decay via the lightest chargino and second-lightest neutralino.

0 data tables match query

Search for $R$-parity violating supersymmetry in pp collisions at $\sqrt{s} = $ 13 TeV using b jets in a final state with a single lepton, many jets, and high sum of large-radius jet masses

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 783 (2018) 114-139, 2018.
Inspire Record 1644901 DOI 10.17182/hepdata.81002

Results are reported from a search for physics beyond the standard model in proton-proton collisions at a center-of-mass energy of $\sqrt{s} = $ 13 TeV. The search uses a signature of a single lepton, large jet and bottom quark jet multiplicities, and high sum of large-radius jet masses, without any requirement on the missing transverse momentum in an event. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ recorded by the CMS experiment at the LHC. No significant excess beyond the prediction from standard model processes is observed. The results are interpreted in terms of upper limits on the production cross section for $R$-parity violating supersymmetric extensions of the standard model using a benchmark model of gluino pair production, in which each gluino decays promptly via $ {\mathrm{\widetilde{g}}} \rightarrow \mathrm{t} \mathrm{b} \mathrm{s} $. Gluinos with a mass below 1610 GeV are excluded at 95% confidence level.

0 data tables match query