Version 2
Charged-particle nuclear modification factors in PbPb and pPb collisions at sqrt(s[NN)]=5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2017) 039, 2017.
Inspire Record 1496050 DOI 10.17182/hepdata.77101

The spectra of charged particles produced within the pseudorapidity window abs(eta) < 1 at sqrt(s[NN]) = 5.02 TeV are measured using 404 inverse microbarns of PbPb and 27.4 inverse picobarns of pp data collected by the CMS detector at the LHC in 2015. The spectra are presented over the transverse momentum ranges spanning 0.5 < pt < 400 GeV in pp and 0.7 < pt < 400 GeV in PbPb collisions. The corresponding nuclear modification factor, R[AA], is measured in bins of collision centrality. The R[AA] in the 5% most central collisions shows a maximal suppression by a factor of 7-8 in the pt region of 6-9 GeV. This dip is followed by an increase, which continues up to the highest pt measured, and approaches unity in the vicinity of pt = 200 GeV. The R[AA] is compared to theoretical predictions and earlier experimental results at lower collision energies. The newly measured pp spectrum is combined with the pPb spectrum previously published by the CMS Collaboration to construct the pPb nuclear modification factor, R[pA], up to 120 GeV. For pt > 20 GeV, R[pA] exhibits weak momentum dependence and shows a moderate enhancement above unity.

0 data tables match query

Transverse Momentum Distribution and Nuclear Modification Factor of Charged Particles in p-Pb Collisions at sqrt{s_NN} = 5.02 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 110 (2013) 082302, 2013.
Inspire Record 1190895 DOI 10.17182/hepdata.37287

The transverse momentum ($p_{\mathrm T}$) distribution of primary charged particles is measured in minimum bias (non-single-diffractive) p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ALICE detector at the LHC. The $p_{\mathrm T}$ spectra measured near central rapidity in the range $0.5<p_{\mathrm T}<20$ GeV/$c$ exhibit a weak pseudorapidity dependence. The nuclear modification factor $R_{\mathrm{pPb}}$ is consistent with unity for $p_{\mathrm T}$ above 2 GeV/$c$. This measurement indicates that the strong suppression of hadron production at high $p_{\mathrm T}$ observed in Pb-Pb collisions at the LHC is not due to an initial-state effect. The measurement is compared to theoretical calculations.

0 data tables match query

Measurement of the nuclear modification factor and prompt charged particle production in $p\mathrm{Pb}$ and $pp$ collisions at $\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Phys.Rev.Lett. 128 (2022) 142004, 2022.
Inspire Record 1913240 DOI 10.17182/hepdata.131597

The production of prompt charged particles in proton-lead collisions and in proton-proton collisions at the nucleon-nucleon centre-of-mass energy ${\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}}$ is studied at LHCb as a function of pseudorapidity ($\eta$) and transverse momentum ($p_{\mathrm{T}}$) with respect to the proton beam direction. The nuclear modification factor for charged particles is determined as a function of $\eta$ between ${-4.8<\eta<-2.5}$ (backward region) and ${2.0<\eta<4.8}$ (forward region), and $p_{\mathrm{T}}$ between ${0.2<p_{\mathrm{T}}<8.0\,\mathrm{GeV}/c}$. The results show a suppression of charged particle production in proton-lead collisions relative to proton-proton collisions in the forward region and an enhancement in the backward region for $p_{\mathrm{T}}$ larger than $1.5\,\mathrm{GeV}/c$. This measurement constrains nuclear PDFs and saturation models at previously unexplored values of the parton momentum fraction down to $10^{-6}$.

0 data tables match query