MEASUREMENT OF THE CHARGED PARTICLE MULTIPLICITY IN P P COLLISIONS AT 102-GEV/C.

Chapman, J.W. ; Green, N. ; Roe, B.P. ; et al.
Phys.Rev.Lett. 29 (1972) 1686-1688, 1972.
Inspire Record 73777 DOI 10.17182/hepdata.21427

We present preliminary results from a sample of ∼ 1200 events obtained from an exposure of the 30-in. Argonne National Laboratory—National Accelerator Laboratory liquid-hydrogen bubble chamber to 102-GeVc protons. The elastic and total inelastic cross sections are respectively 6.9 ± 1.0 and 32.8 ± 1.1 mb. The parameters of the multiplicity distribution for negative tracks are 〈n−〉=2.17±0.07, D−2=〈n−2〉−〈n−〉2=2.56±0.12, and f2−=D−2−〈n−〉=0.39±0.10.

0 data tables match query

Cross-Sections and Charged Particle Multiplicities in pi+ p and p p Collisions at 60-GeV/c

Bromberg, C. ; Ferbel, T. ; Jensen, T. ; et al.
Phys.Rev.D 15 (1977) 64, 1977.
Inspire Record 108488 DOI 10.17182/hepdata.24538

We have measured charged-particle multiplicities and elastic and inelastic cross sections for π+p and pp interactions at 60 GeV/c. The data are from a 30 000-picture exposure of the 30-inch bubble chamber to a tagged but unseparated positive-particle beam at Fermilab. The low-order moments of the inelastic multiplicity distributions for all charged particles are 〈n〉 = 5.60±0.09, f2 = 0.96±0.31, and 〈n〉D = 2.19±0.06 for pp reactions and 〈n〉6.23±0.10, f2 = 1.63±0.37, and 〈n〉D = 2.22±0.06 for π+p collisions.

0 data tables match query

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nucl.Phys.B 889 (2014) 486-548, 2014.
Inspire Record 1312171 DOI 10.17182/hepdata.68910

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.

0 data tables match query

Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

0 data tables match query