Measurement of the Production Cross Section of a Higgs Boson with Large Transverse Momentum in Its Decays to a Pair of $\tau$ Leptons in Proton-Proton Collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-21-017, 2024.
Inspire Record 2772744 DOI 10.17182/hepdata.149577

A measurement of the production cross section of a Higgs boson with transverse momentum greater than 250 GeV is presented where the Higgs boson decays to a pair of $\tau$ leptons. It is based on proton-proton collision data collected by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$. Because of the large transverse momentum of the Higgs boson the $\tau$ leptons from its decays are boosted and produced spatially close, with their decay products overlapping. Therefore, a dedicated algorithm was developed to reconstruct and identify them. The observed (expected) significance of the measured signal with respect to the standard model background-only hypothesis is 3.5 (2.2) standard deviations. The product of the production cross section and branching fraction is measured to be 1.64$^{+0.68}_{-0.54}$ times the standard model expectation. The fiducial differential production cross section is also measured as functions of the Higgs boson and leading jet transverse momenta. This measurement extends the probed large-transverse-momentum region beyond 600 GeV.

0 data tables match query

Search for Higgs boson pair production with one associated vector boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-006, 2024.
Inspire Record 2776996 DOI 10.17182/hepdata.150032

A search for Higgs boson pair (HH) production in association with a vector boson V (W or Z boson) is presented. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. All hadronic and leptonic decays of V bosons are used. The leptons considered are electrons, muons, and neutrinos. The HH production is searched for in the $\mathrm{b\bar{b}b\bar{b}}$ decay channel. An observed (expected) upper limit at 95% confidence level of VHH production cross section is set at 294 (124) times the standard model prediction. Constraints are also set on the modifiers of the Higgs boson trilinear self-coupling, $\kappa_{\lambda}$, assuming $\kappa_{2\mathrm{V}}$ = 1 and vice versa on the coupling of two Higgs bosons with two vector bosons, $\kappa_{2\mathrm{V}}$. The observed (expected) 95% confidence intervals of these coupling modifiers are -37.7 $\lt$ $\kappa_{\lambda}$ $\lt$ 37.2 (-30.1 $\lt$ $\kappa_{\lambda}$ $\lt$ 8.9) and -12.2 $\lt$ $\kappa_{2\mathrm{V}}$ $\lt$ 13.5 (-7.2 $\lt$ $\kappa_{2\mathrm{V}}$ $\lt$ 8.9), respectively.

0 data tables match query

Search for ZZ and ZH Production in the $\mathrm{b\bar{b}b\bar{b}}$ Final State using Proton-Proton Collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-011, 2024.
Inspire Record 2772624 DOI 10.17182/hepdata.146898

A search for ZZ and ZH production in the $\mathrm{b\bar{b}b\bar{b}}$ final state is presented, where H is the standard model (SM) Higgs boson. The search uses an event sample of proton-proton collisions corresponding to an integrated luminosity of 133 fb$^{-1}$ collected at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The analysis introduces several novel techniques for deriving and validating a multi-dimensional background model based on control samples in data. A multiclass multivariate classifier customized for the $\mathrm{b\bar{b}b\bar{b}}$ final state is developed to derive the background model and extract the signal. The data are found to be consistent, within uncertainties, with the SM predictions. The observed (expected) upper limits at 95% confidence level are found to be 3.8 (3.8) and 5.0 (2.9) times the SM prediction for the ZZ and ZH production cross sections, respectively.

0 data tables match query

Measurement of inclusive charged-particle jet production in pp and p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
CERN-EP-2023-131, 2023.
Inspire Record 2678721 DOI 10.17182/hepdata.150694

Measurements of inclusive charged-particle jet production in pp and p-Pb collisions at center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm NN}} = 5.02$ TeV and the corresponding nuclear modification factor $R_{\rm pPb}^{\rm ch\,jet}$ are presented, using data collected with the ALICE detector at the LHC. Jets are reconstructed in the central rapidity region $|\eta_{\rm jet}| < 0.5$ from charged particles using the anti-$k_{\rm T}$ algorithm with resolution parameters $R = 0.2$, 0.3, and 0.4. The $p_{\rm T}$-differential inclusive production cross section of charged-particle jets, as well as the corresponding cross-section ratios, are reported for pp and p-Pb collisions in the transverse momentum range $10 < p^{\rm ch}_{\rm T,jet} < 140$ GeV/$c$ and $10 < p^{\rm ch}_{\rm T,jet} < 160$ GeV/$c$, respectively, together with the nuclear modification factor $R_{\rm pPb}^{\rm ch\,jet}$ in the range $10 < p^{\rm ch}_{\rm T,jet} < 140$ GeV/$c$. The analysis extends the $p_{\rm T}$ range of the previously-reported charged-particle jet measurements by the ALICE Collaboration. The nuclear modification factor is found to be consistent with one and independent of the jet resolution parameter with the improved precision of this study, indicating that the possible influence of cold nuclear matter effects on the production cross section of charged-particle jets in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV is smaller than the current precision. The obtained results are in agreement with other minimum bias jet measurements available for RHIC and LHC energies, and are well reproduced by the NLO perturbative QCD POWHEG calculations with parton shower provided by PYTHIA8 as well as by JETSCAPE simulations.

0 data tables match query

Multiplicity and transverse momentum dependence of charge-balance functions in pPb and PbPb collisions at LHC energies

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-HIN-21-017, 2023.
Inspire Record 2679254 DOI 10.17182/hepdata.135972

Measurements of the charge-dependent two-particle angular correlation function in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at$\sqrt{s_\mathrm{NN}}$ = 5.02 TeV are reported. The pPb and PbPb datasets correspond to integrated luminosities of 186\nbinv and 0.607 nb$^{-1}$, respectively, and were collected using the CMS detector at the CERN LHC. The charge-dependent correlations are characterized by balance functions of same- and opposite-sign particle pairs. The balance functions, which contain information about the creation time of charged particle pairs and the development of collectivity, are studied as functions of relative pseudorapidity ($\Delta \eta$) and relative azimuthal angle ($\Delta \phi$), for various multiplicity and transverse momentum ($p_\mathrm{T}$) intervals. A multiplicity dependence of the balance function is observed in $\Delta \eta$ and $\Delta \phi$ for both systems. The width of the balance functions decreases towards high-multiplicity collisions in the momentum region $\lt$2 GeV, for pPb and PbPb results. No multiplicity dependence is observed at higher transverse momentum. The data are compared with HYDJET, HIJING and AMPT generator predictions, none of which capture completely the multiplicity dependence seen in the data.

0 data tables match query

Version 2
Probing small Bjorken-$x$ nuclear gluonic structure via coherent J/$\psi$ photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 262301, 2023.
Inspire Record 2648536 DOI 10.17182/hepdata.138867

Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/$\psi$ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W$^\text{Pb}_{\gamma\text{N}}$), over a wide range of 40 $\lt$ W$^\text{Pb}_{\gamma\text{N}}$$\lt$ 400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb$^{-1}$. The cross section is observed to rise rapidly at low W$^\text{Pb}_{\gamma\text{N}}$, and plateau above W$^\text{Pb}_{\gamma\text{N}}$$\approx$ 40 GeV, up to 400 GeV, a new regime of small Bjorken-$x$ ($\approx$ 6 $\times$ 10$^{-5}$) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.

0 data tables match query

Elliptic anisotropy measurement of the f$_0$(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIN-20-002, 2023.
Inspire Record 2741119 DOI 10.17182/hepdata.146017

Despite the f$_0$(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($\mathrm{q\bar{q}}$) meson, a tetraquark ($\mathrm{q\bar{q}q\bar{q}}$) exotic state, a kaon-antikaon ($\mathrm{K\bar{K}}$) molecule, or a quark-antiquark-gluon ($\mathrm{q\bar{q}g}$) hybrid. This paper reports strong evidence that the f$_0$(980) state is an ordinary $\mathrm{q\bar{q}}$ meson, inferred from the scaling of elliptic anisotropies ($v_2$) with the number of constituent quarks ($n_\mathrm{q}$), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f$_0$(980) state is reconstructed via its dominant decay channel f$_0$(980) $\to$$\pi^+\pi^-$, in proton-lead collisions recorded by the CMS experiment at the LHC, and its $v_2$ is measured as a function of transverse momentum ($p_\mathrm{T}$). It is found that the $n_q$ = 2 ($\mathrm{q\bar{q}}$ state) hypothesis is favored over $n_q$ = 4 ($\mathrm{q\bar{q}q\bar{q}}$ or $\mathrm{K\bar{K}}$ states) by 7.7, 6.3, or 3.1 standard deviations in the $p_\mathrm{T}$$\lt$ 10, 8, or 6 GeV/$c$ ranges, respectively, and over $n_\mathrm{q}$ = 3 ($\mathrm{q\bar{q}g}$ hybrid state) by 3.5 standard deviations in the $p_\mathrm{T}$$\lt$ 8 GeV/$c$ range. This result represents the first determination of the quark content of the f$_0$(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.

0 data tables match query

Observation of enhanced long-range elliptic anisotropies inside high-multiplicity jets in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIN-21-013, 2023.
Inspire Record 2741115 DOI 10.17182/hepdata.146015

A search for partonic collective effects inside jets produced in proton-proton collisions is performed via correlation measurements of charged constituents using the CMS detector at the CERN LHC. The analysis uses data collected at a center-of-mass energy of $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Jets are reconstructed with the anti-$k_\mathrm{T}$ algorithm with a distance parameter of 0.8 and are required to have transverse momentum greater than 550 GeV and pseudorapidity $\lvert\eta\rvert$$\lt$ 1.6. Two-particle correlations among the charged constituents within the jets are studied as functions of the particles' azimuthal angle and pseudorapidity separations ($\Delta\phi^*$ and $\Delta\eta^*$) in a jet coordinate basis, where constituents' $\eta^*$, $\phi^*$ are defined relative to the direction of the jet. The correlation functions are studied in classes of in-jet charged-particle multiplicity up to $N_\text{ch}^\mathrm{j}$$\approx$ 100. Fourier harmonics are extracted from long-range azimuthal correlation functions to characterize azimuthal anisotropy for $\lvert\Delta\eta^*\rvert$$\gt$ 2. For low-multiplicity jets, the long-range elliptic anisotropic harmonic, $v^*_2$, is observed to decrease with $N_\text{ch}^\mathrm{j}$. This trend is well described by Monte Carlo event generators. However, a rising trend for $v^*_2$ emerges at $N_\text{ch}^\mathrm{j}$$\gtrsim$ 80, hinting at a possible onset of collective behavior, which is not reproduced by the models tested. This observation yields new insights into the dynamics of parton fragmentation processes in the vacuum.

0 data tables match query

Study of azimuthal anisotropy of $\Upsilon$(1S) mesons in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 850 (2024) 138518, 2024.
Inspire Record 2706679 DOI 10.17182/hepdata.131311

The azimuthal anisotropy of $\Upsilon$(1S) mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16 TeV. The $\Upsilon$(1S) mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the $\Upsilon$(1S) mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of $\Upsilon$(1S) transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for $\Upsilon$(1S) mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV.

0 data tables match query

Version 2
Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

0 data tables match query

Version 3
Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 788 (2019) 166-179, 2019.
Inspire Record 1672790 DOI 10.17182/hepdata.85727

Transverse momentum ($p_{\rm T}$) spectra of charged particles at mid-pseudorapidity in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV measured with the ALICE apparatus at the Large Hadron Collider are reported. The kinematic range $0.15 < p_{\rm T} < 50$ GeV/$c$ and $|\eta| < 0.8$ is covered. Results are presented in nine classes of collision centrality in the 0-80% range. For comparison, a pp reference at the collision energy of $\sqrt{s}$ = 5.44 TeV is obtained by interpolating between existing \pp measurements at $\sqrt{s}$ = 5.02 and 7 TeV. The nuclear modification factors in central Xe-Xe collisions and Pb-Pb collisions at a similar center-of-mass energy of $\sqrt{s_{\rm NN}}$ = 5.02 TeV, and in addition at 2.76 TeV, at analogous ranges of charged particle multiplicity density $\left\langle\rm{d}N_{\rm ch}/\rm{d}\eta\right\rangle$ show a remarkable similarity at $p_{\rm T}> 10$ GeV/$c$. The comparison of the measured $R_{\rm AA}$ values in the two colliding systems could provide insight on the path length dependence of medium-induced parton energy loss. The centrality dependence of the ratio of the average transverse momentum $\left\langle p_{\rm{T}}\right\rangle$ in Xe-Xe collisions over Pb-Pb collision at $\sqrt{s}$ = 5.02 TeV is compared to hydrodynamical model calculations.

0 data tables match query

Searches for exclusive Higgs boson decays into $D^*\gamma$ and $Z$ boson decays into $D^0\gamma$ and $K^0_s\gamma$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-037, 2024.
Inspire Record 2763131 DOI 10.17182/hepdata.147194

Searches for the exclusive decays of the Higgs boson into $D^*\gamma$ and of the $Z$ boson into $D^0\gamma$ and $K^0_s\gamma$ can probe flavour-violating Higgs and $Z$ boson couplings to light quarks. Searches for these decays are performed with a $pp$ collision data sample corresponding to an integrated luminosity of $136.3$ fb$^{-1}$ collected at $\sqrt{s}=13$ TeV between 2016-2018 with the ATLAS detector at the CERN Large Hadron Collider. In the $D^*\gamma$ and $D^0\gamma$ channels, the observed (expected) 95$\%$ confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow D^*\gamma)< 1.0 (1.2)\times 10^{-3}$, ${\cal B}(Z\rightarrow D^0\gamma)< 4.0 (3.4)\times 10^{-6}$, while the corresponding results in the $K^0_s\gamma$ channel are ${\cal B}(Z\rightarrow K^0_s\gamma)< 3.1 (3.0)\times 10^{-6}$.

0 data tables match query

Measurement of Differential ZZ+Jets Production Cross Sections in pp Collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-22-001, 2024.
Inspire Record 2773780 DOI 10.17182/hepdata.145862

Diboson production in association with jets is studied in the fully leptonic final states, pp $\to$ (Z$\gamma^*$)(Z/$\gamma^*$)+jets $\to$ 2$\ell$2$\ell'$+jets, ($\ell,\ell'$ = e or $\mu$) in proton-proton collisions at a center-of-mass energy of 13 TeV. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. Differential distributions and normalized differential cross sections are measured as a function of jet multiplicity, transverse momentum $p_\mathrm{T}$, pseudorapidity $\eta$, invariant mass and $\Delta\eta$ of the highest-$p_\mathrm{T}$ and second-highest-$p_\mathrm{T}$ jets, and as a function of invariant mass of the four-lepton system for events with various jet multiplicities. These differential cross sections are compared with theoretical predictions that mostly agree with the experimental data. However, in a few regions we observe discrepancies between the predicted and measured values. Further improvement of the predictions is required to describe the ZZ+jets production in the whole phase space.

0 data tables match query

Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

0 data tables match query

Search for supersymmetry in final states with disappearing tracks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SUS-21-006, 2023.
Inspire Record 2705044 DOI 10.17182/hepdata.144178

A search is presented for charged, long-lived supersymmetric particles in final states with one or more disappearing tracks. The search is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the CERN LHC between 2016 and 2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. The search is performed over final states characterized by varying numbers of jets, b-tagged jets, electrons, and muons. The length of signal-candidate tracks in the plane perpendicular to the beam axis is used to characterize the lifetimes of wino- and higgsino-like charginos produced in the context of the minimal supersymmetric standard model. The d$E$/d$x$ energy loss of signal-candidate tracks is used to increase the sensitivity to charginos with a large mass and thus a small Lorentz boost. The observed results are found to be statistically consistent with the background-only hypothesis. Limits on the pair production cross section of gluinos and squarks are presented in the framework of simplified models of supersymmetric particle production and decay, and for electroweakino production based on models of wino and higgsino dark matter. The limits presented are the most stringent to date for scenarios with light third-generation squarks and a wino- or higgsino-like dark matter candidate capable of explaining the known dark matter relic density.

0 data tables match query

Estimate of Background Baseline and Upper Limit on the Chiral Magnetic Effect in Isobar Collisions at $\sqrt{s_{\text{NN}}}=200$ GeV at the Relativistic Heavy-Ion Collider

The STAR collaboration
2023.
Inspire Record 2713075 DOI 10.17182/hepdata.145133

For the search of the chiral magnetic effect (CME), STAR previously presented the results from isobar collisions (${^{96}_{44}\text{Ru}}+{^{96}_{44}\text{Ru}}$, ${^{96}_{40}\text{Zr}}+{^{96}_{40}\text{Zr}}$) obtained through a blind analysis. The ratio of results in Ru+Ru to Zr+Zr collisions for the CME-sensitive charge-dependent azimuthal correlator ($\Delta\gamma$), normalized by elliptic anisotropy ($v_{2}$), was observed to be close to but systematically larger than the inverse multiplicity ratio. The background baseline for the isobar ratio, $Y = \frac{(\Delta\gamma/v_{2})^{\text{Ru}}}{(\Delta\gamma/v_{2})^{\text{Zr}}}$, is naively expected to be $\frac{(1/N)^{\text{Ru}}}{(1/N)^{\text{Zr}}}$; however, genuine two- and three-particle correlations are expected to alter it. We estimate the contributions to $Y$ from those correlations, utilizing both the isobar data and HIJING simulations. After including those contributions, we arrive at a final background baseline for $Y$, which is consistent with the isobar data. We extract an upper limit for the CME fraction in the $\Delta\gamma$ measurement of approximately $10\%$ at a $95\%$ confidence level on in isobar collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV.

0 data tables match query

Studies of new Higgs boson interactions through nonresonant $HH$ production in the $b\bar{b}\gamma\gamma$ final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 01 (2024) 066, 2024.
Inspire Record 2712676 DOI 10.17182/hepdata.144918

A search for nonresonant Higgs boson pair production in the $b\bar{b}\gamma\gamma$ final state is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this final state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs ($H$) boson self-coupling modifier $\kappa_\lambda$ but also of the quartic $HHVV$ ($V=W,Z$) coupling modifier $\kappa_{2V}$. No significant excess above the expected background from Standard Model processes is observed. An observed upper limit $\mu_{HH}<4.0$ is set at 95% confidence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confidence intervals for the coupling modifiers are $-1.4<\kappa_\lambda<6.9$ and $-0.5<\kappa_{2V}<2.7$, assuming all other Higgs boson couplings except the one under study are fixed to the Standard Model predictions. The results are interpreted in the Standard Model effective field theory and Higgs effective field theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions.

0 data tables match query

Version 2
Measurement of the top quark pole mass using $\mathrm{t\bar{t}}$+jet events in the dilepton final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 077, 2023.
Inspire Record 2106483 DOI 10.17182/hepdata.127990

A measurement of the top quark pole mass $m_\mathrm{t}^\text{pole}$ in events where a top quark-antiquark pair ($\mathrm{t\bar{t}}$) is produced in association with at least one additional jet ($\mathrm{t\bar{t}}$+jet) is presented. This analysis is performed using proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb$^{-1}$. Events with two opposite-sign leptons in the final state (e$^+$e$^-$, $\mu^+\mu^-$, e$^\pm\mu^\mp$) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the $\mathrm{t\bar{t}}$+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in $m_\mathrm{t}^\text{pole}$ = 172.93 $\pm$ 1.36 GeV.

0 data tables match query

Search for a new $Z'$ gauge boson via the $pp \rightarrow W^{\pm(*)} \rightarrow Z' \mu^{\pm} \nu \rightarrow \mu^{\pm}\mu^{\mp}\mu^{\pm}\nu$ process in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-042, 2024.
Inspire Record 2761384 DOI 10.17182/hepdata.149991

A search for a new $Z'$ gauge boson predicted by $L_{\mu}-L_{\tau}$ models, based on charged-current Drell-Yan production, $pp \rightarrow W^{\pm(*)} \rightarrow Z' \mu^{\pm} \nu \rightarrow \mu^{\pm}\mu^{\mp}\mu^{\pm}\nu$, is presented. The data sample used corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. The search examines a final state of $3\mu$ plus large missing transverse momentum. Upper limits are set on the $Z'$ production cross-section times branching ratio in the mass range of 5-81 GeV. After combining with the previous $Z'$ search using the neutral-current Drell-Yan production with a $4\mu$ final state, the most stringent exclusion limits to date are achieved in the parameter space of the $Z'$ coupling strength and mass.

0 data tables match query

Multi-particle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 99 (2019) 024903, 2019.
Inspire Record 1670164 DOI 10.17182/hepdata.150019

We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity $1<|\eta|<3$ in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients $v_2\{2\}$, $v_2\{4\}$, $v_2\{6\}$, and $v_2\{8\}$, and triangular flow coefficients $v_3\{2\}$ and $v_3\{4\}$. Using the small-variance limit, we estimate the mean and variance of the event-by-event $v_2$ distribution from $v_2\{2\}$ and $v_2\{4\}$. In a complementary analysis, we also use a folding procedure to study the distributions of $v_2$ and $v_3$ directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their translation into the final state momentum distributions are discussed.

0 data tables match query

Systematic Study of Azimuthal Anisotropy in Cu$+$Cu and Au$+$Au Collisions at $\sqrt{s_{_{NN}}} = 62.4$ and 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 92 (2015) 034913, 2015.
Inspire Record 1332240 DOI 10.17182/hepdata.150018

We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ and centrality in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV and 62.4 GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{\rm part}$. We observe that $v_2$ divided by eccentricity ($\varepsilon$) monotonically increases with $N_{\rm part}$ and scales as ${N_{\rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as a function of transverse kinetic energy $KE_T=m_T-m$ between $0.1<KE_T/n_q<1$ GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu$+$Cu data at 62.4 GeV, of $v_2/(n_q\cdot\varepsilon\cdot N^{1/3}_{\rm part})$ vs $KE_T/n_q$ for all measured particles.

0 data tables match query

Modification of charged-particle jets in event-shape engineered Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 851 (2024) 138584, 2024.
Inspire Record 2681682 DOI 10.17182/hepdata.150418

Charged-particle jet yields have been measured in semicentral Pb$-$Pb collisions at center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm NN}} = 5$ TeV with the ALICE detector at the LHC. These yields are reported as a function of the jet transverse momentum, and further classified by their angle with respect to the event plane and the event shape, characterized by ellipticity, in an effort to study the path-length dependence of jet quenching. Jets were reconstructed at midrapidity from charged-particle tracks using the anti-$k_{\rm T}$ algorithm with resolution parameters $R =$ 0.2 and 0.4, with event-plane angle and event-shape values determined using information from forward scintillating detectors. The results presented in this letter show that, in semicentral Pb$-$Pb collisions, there is no significant difference between jet yields in predominantly isotropic and elliptical events. However, out-of-plane jets are observed to be more suppressed than in-plane jets. Further, this relative suppression is greater for low transverse momentum ($<$ 50 GeV/$c$) $R =$ 0.2 jets produced in elliptical events, with out-of-plane to in-plane jet-yield ratios varying up to 5.2$\sigma$ between different event-shape classes. These results agree with previous studies indicating that jets experience azimuthally anisotropic suppression when traversing the QGP medium, and can provide additional constraints on the path-length dependence of jet energy loss.

0 data tables match query

Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-18-026, 2024.
Inspire Record 2769284 DOI 10.17182/hepdata.147309

A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H $\to$ aa $\to$$\mathrm{b\bar{b}b\bar{b}}$. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 $\lt$$m_\mathrm{a}$$\lt$ 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp $\to$ WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction $\mathcal{B}$(H $\to$ aa $\to$ $\mathrm{b\bar{b}b\bar{b}}$). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for $m_\mathrm{a} =$ 20 GeV to 0.36 for $m_\mathrm{a} =$ 60 GeV, complementing other measurements in the $\mu\mu\tau\tau$, $\tau\tau\tau\tau$ and bb$\ell\ell$ ($\ell=$ $\mu$,$\tau$) channels.

0 data tables match query

Measurement of the $B^{\pm}$ production cross-section in pp collisions at $\sqrt{s} =$ 7 and 13 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 12 (2017) 026, 2017.
Inspire Record 1630633 DOI 10.17182/hepdata.149528

The production of $B^{\pm}$ mesons is studied in $pp$ collisions at centre-of-mass energies of 7 and 13 TeV, using $B^{\pm}\rightarrow J/\psi K^{\pm}$ decays and data samples corresponding to 1.0 fb$^{-1}$ and 0.3 fb$^{-1}$, respectively. The production cross-sections summed over both charges and integrated over the transverse momentum range $0<p_{\text{T}}< 40$ GeV/$c$ and the rapidity range $2.0<y<4.5$ are measured to be $\sigma(pp \rightarrow B^{\pm} X, \sqrt{s} = \text{7 TeV}) = 43.0 \pm 0.2 \pm 2.5 \pm 1.7\mu b,$ $\sigma(pp \rightarrow B^{\pm} X, \sqrt{s} = \text{13 TeV}) = 86.6 \pm 0.5 \pm 5.4 \pm 3.4\mu b,$ where the first uncertainties are statistical, the second are systematic, and the third are due to the limited knowledge of the $B^{\pm}\rightarrow J/\psi K^{\pm}$ branching fraction. The ratio of the cross-section at 13 TeV to that at 7 TeV is determined to be $2.02\pm0.02\text{(stat)}\pm0.12\text{(syst)}$. Differential cross-sections are also reported as functions of $p_{\text{T}}$ and $y$. All results are in agreement with theoretical calculations based on the state-of-art fixed next-to-leading order quantum chromodynamics.

0 data tables match query

K$^{*}$(892)$^{\pm}$ resonance production in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.C 109 (2024) 044902, 2024.
Inspire Record 2692205 DOI 10.17182/hepdata.150017

The production of K$^*$(892)$^\pm$ meson resonance is measured at midrapidity ($|y|<0.5$) in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV using the ALICE detector at the LHC. The resonance is reconstructed via its hadronic decay channel K$^*$(892)$^\pm \rightarrow \rm{K^0_S \pi^\pm}$. The transverse momentum distributions are obtained for various centrality intervals in the $p_{\rm T}$ range of 0.4-16 GeV/$c$. The reported measurements of integrated yields, mean transverse momenta, and particle yield ratios are consistent with previous ALICE measurements for K$^*$(892)$^0$. The $p_{\rm T}$-integrated yield ratio 2K$^*$(892)$^\pm$/($\rm{K^+ + K^-}$) in central Pb-Pb collisions shows a significant suppression (9.3$\sigma$) relative to pp collisions. Thermal model calculations overpredict the particle yield ratio. Although both simulations consider the hadronic phase, only HRG-PCE accurately represents the measurements, whereas MUSIC+SMASH tends to overpredict them. These observations, along with the kinetic freeze-out temperatures extracted from the yields of light-flavored hadrons using the HRG-PCE model, indicate a finite hadronic phase lifetime, which increases towards central collisions. The $p_{\rm T}$-differential yield ratios 2K$^*$(892)$^\pm$/($\rm{K^+ + K^-}$) and 2K$^*$(892)$^\pm$/($\rm{\pi^+ + \pi^-}$) are suppressed by up to a factor of five at $p_{\rm T}<2$ GeV/$c$ in central Pb-Pb collisions compared to pp collisions at $\sqrt{s} =$ 5.02 TeV. Both particle ratios and are qualitatively consistent with expectations for rescattering effects in the hadronic phase. The nuclear modification factor shows a smooth evolution with centrality and is below unity at $p_{\rm T}>8$ GeV/$c$, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium.

0 data tables match query

Observation of the J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-006, 2024.
Inspire Record 2769595 DOI 10.17182/hepdata.147273

The J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb${-1}$. Normalizing to the J/$\psi$$\to$$\mu^+\mu^-$ decay mode leads to a branching fraction [10.1$^{+3.3}_{-2.7}$ (stat) $\pm$ 0.4 (syst) ]$\times$ 10$^{-7}$, a value that is consistent with the standard model prediction.

0 data tables match query

Version 3
Beam Energy Dependence of Fifth and Sixth-Order Net-proton Number Fluctuations in Au+Au Collisions at RHIC

The STAR collaboration Aboona, Bassam ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.Lett. 130 (2023) 082301, 2023.
Inspire Record 2119969 DOI 10.17182/hepdata.132661

We report the beam energy and collision centrality dependence of fifth and sixth order cumulants ($C_{5}$, $C_{6}$) and factorial cumulants ($\kappa_{5}$, $\kappa_{6}$) of net-proton and proton distributions, from $\sqrt{s_{NN}} = 3 - 200$ GeV Au+Au collisions at RHIC. The net-proton cumulant ratios generally follow the hierarchy expected from QCD thermodynamics, except for the case of collisions at $\sqrt{s_{NN}}$ = 3 GeV. $C_{6}/C_{2}$ for 0-40% centrality collisions is increasingly negative with decreasing $\sqrt{s_{NN}}$, while it is positive for the lowest $\sqrt{s_{NN}}$ studied. These observed negative signs are consistent with QCD calculations (at baryon chemical potential, $\mu_{B} \leq$ 110 MeV) that include a crossover quark-hadron transition. In addition, for $\sqrt{s_{NN}} \geq$ 11.5 GeV, the measured proton $\kappa_{n}$, within uncertainties, does not support the two-component shape of proton distributions that would be expected from a first-order phase transition. Taken in combination, the hyper-order proton number fluctuations suggest that the structure of QCD matter at high baryon density, $\mu_{B}\sim 750$ MeV ($\sqrt{s_{NN}}$ = 3 GeV) is starkly different from those at vanishing $\mu_{B}\sim 20$MeV ($\sqrt{s_{NN}}$ = 200 GeV and higher).

0 data tables match query

Search for Higgs boson pair production in the bbWW decay mode in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-21-005, 2024.
Inspire Record 2768920 DOI 10.17182/hepdata.149576

A search for Higgs boson pair (HH) production with one Higgs boson decaying to two bottom quarks and the other to two W bosons are presented. The search is done using proton-proton collisions data at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded by the CMS detector at the LHC from 2016 to 2018. The final states considered include at least one leptonically decaying W boson. No evidence for the presence of a signal is observed and corresponding upper limits on the HH production cross section are derived. The limit on the inclusive cross section of the nonresonant HH production, assuming that the distributions of kinematic observables are as expected in the standard model (SM), is observed (expected) to be 14 (18) times the value predicted by the SM, at 95% confidence level. The limits on the cross section are also presented as functions of various Higgs boson coupling modifiers, and anomalous Higgs boson coupling scenarios. In addition, limits are set on the resonant HH production via spin-0 and spin-2 resonances within the mass range 250-900 GeV.

0 data tables match query

Search for periodic signals in the dielectron and diphoton invariant mass spectra using 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 10 (2023) 079, 2023.
Inspire Record 2660845 DOI 10.17182/hepdata.140955

A search for physics beyond the Standard Model inducing periodic signals in the dielectron and diphoton invariant mass spectra is presented using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data collected by the ATLAS experiment at the LHC. Novel search techniques based on continuous wavelet transforms are used to infer the frequency of periodic signals from the invariant mass spectra and neural network classifiers are used to enhance the sensitivity to periodic resonances. In the absence of a signal, exclusion limits are placed at the 95% confidence level in the two-dimensional parameter space of the clockwork gravity model. Model-independent searches for deviations from the background-only hypothesis are also performed.

0 data tables match query

Single identified hadron spectra from s(NN)**1/2 = 130-GeV Au + Au collisions.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 69 (2004) 024904, 2004.
Inspire Record 623413 DOI 10.17182/hepdata.149578

Transverse momentum spectra and yields of hadrons are measured by the PHENIX collaboration in Au + Au collisions at sqrt(s_NN) = 130 GeV at the Relativistic Heavy Ion Collider (RHIC). The time-of-flight resolution allows identification of pions to transverse momenta of 2 GeV/c and protons and antiprotons to 4 GeV/c. The yield of pions rises approximately linearly with the number of nucleons participating in the collision, while the number of kaons, protons, and antiprotons increases more rapidly. The shape of the momentum distribution changes between peripheral and central collisions. Simultaneous analysis of all the p_T spectra indicates radial collective expansion, consistent with predictions of hydrodynamic models. Hydrodynamic analysis of the spectra shows that the expansion velocity increases with collision centrality and collision energy. This expansion boosts the particle momenta, causing the yield from soft processes to exceed that for hard to large transverse momentum, perhaps as large as 3 GeV/c.

0 data tables match query

Centrality dependence of charged hadron production in deuteron+gold and nucleon+gold collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 77 (2008) 014905, 2008.
Inspire Record 758544 DOI 10.17182/hepdata.146750

We present transverse momentum (p_T) spectra of charged hadrons measured in deuteron-gold and nucleon-gold collisions at \sqrts = 200 GeV for four centrality classes. Nucleon-gold collisions were selected by tagging events in which a spectator nucleon was observed in one of two forward rapidity detectors. The spectra and yields were investigated as a function of the number of binary nucleon-nucleon collisions, \nu, suffered by deuteron nucleons. A comparison of charged particle yields to those in p+p collisions show that the yield per nucleon-nucleon collision saturates with \nu for high momentum particles. We also present the charged hadron to neutral pion ratios as a function of p_T.

0 data tables match query

Search for long-lived heavy neutrinos in the decays of B mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-019, 2024.
Inspire Record 2766369 DOI 10.17182/hepdata.147308

A search for long-lived heavy neutrinos (N) in the decays of \PB mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb$^{-1}$ collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 $\lt$$m_\mathrm{N}$$\lt$ 3 GeV and decay lengths in the range 10$^{-2}$$\lt$$c\tau$$\lt$ 10$^{4}$ mm, where $\tau_\mathrm{N}$ is the N proper mean lifetime. Signal events are defined by the signature B $\to$$\ell_\mathrm{B}$NX; N $\to$$\ell^{\pm} \pi^{\mp}$, where the leptons $\ell_\mathrm{B}$ and $\ell$ can be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of the $\ell^{\pm}\pi^{\mp}$ invariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, $\vert V_\mathrm{N}\vert^2$, and on $c\tau$ are obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit $\vert V_\mathrm{N}\vert^2$ $\lt$ 2.0$\times$10$^{-5}$ is obtained at $m_\mathrm{N}$ = 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on $\vert V_\mathrm{N}\vert^2$ for masses 1 $\lt$ $m_\mathrm{N}$ $\lt$ 1.7 GeV are the most stringent from a collider experiment to date.

0 data tables match query

Combined search for electroweak production of winos, binos, higgsinos, and sleptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SUS-21-008, 2024.
Inspire Record 2755433 DOI 10.17182/hepdata.145859

A combination of the results of several searches for the electroweak production of the supersymmetric partners of standard model bosons, and of charged leptons, is presented. All searches use proton-proton collision data at $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC in 2016-2018. The analyzed data correspond to an integrated luminosity of up to 137 fb$^{-1}$. The results are interpreted in terms of simplified models of supersymmetry. Two new interpretations are added with this combination: a model spectrum with the bino as the lightest supersymmetric particle together with mass-degenerate higgsinos decaying to the bino and a standard model boson, and the compressed-spectrum region of a previously studied model of slepton pair production. Improved analysis techniques are employed to optimize sensitivity for the compressed spectra in the wino and slepton pair production models. The results are consistent with expectations from the standard model. The combination provides a more comprehensive coverage of the model parameter space than the individual searches, extending the exclusion by up to 125 GeV, and also targets some of the intermediate gaps in the mass coverage.

0 data tables match query

Version 2
Search for Higgs boson pairs decaying to WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 095, 2023.
Inspire Record 2098277 DOI 10.17182/hepdata.130795

The results of a search for Higgs boson pair (HH) production in the WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ decay modes are presented. The search uses 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV from 2016 to 2018. Analyzed events contain two, three, or four reconstructed leptons, including electrons, muons, and hadronically decaying tau leptons. No evidence for a signal is found in the data. Upper limits are set on the cross section for nonresonant HH production, as well as resonant production in which a new heavy particle decays to a pair of Higgs bosons. For nonresonant production, the observed (expected) upper limit on the cross section at 95% confidence level (CL) is 21.3 (19.4) times the standard model (SM) prediction. The observed (expected) ratio of the trilinear Higgs boson self-coupling to its value in the SM is constrained to be within the interval $-$6.9 to 11.1 ($-$6.9 to 11.7) at 95% CL, and limits are set on a variety of new-physics models using an effective field theory approach. The observed (expected) limits on the cross section for resonant HH production range from 0.18 to 0.90 (0.08 to 1.06) pb at 95% CL for new heavy-particle masses in the range 250-1000 GeV.

0 data tables match query

Constraints on anomalous Higgs boson couplings from its production and decay using the WW channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-008, 2024.
Inspire Record 2764172 DOI 10.17182/hepdata.146013

A study of the anomalous couplings of the Higgs boson to vector bosons, including $CP$-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The different-flavor dilepton (e$\mu$) final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.

0 data tables match query

Reaction plane correlated triangular flow in Au+Au collisions at $\mathbf{\sqrt{s_{\textrm{NN}}}=3}$ GeV

The STAR collaboration
2023.
Inspire Record 2702151 DOI 10.17182/hepdata.144480

We measure triangular flow relative to the reaction plane at 3 GeV center-of-mass energy in Au+Au collisions at RHIC. A significant $v_3$ signal is observed for protons, whose magnitude increases for higher rapidity, higher transverse momentum, and more peripheral collisions. The triangular flow is essentially rapidity-odd with a rapidity slope at mid-rapidity, $dv_3/dy|_{(y=0)}$, opposite in sign compared to the slope for directed flow. No significant $v_3$ signal is observed for charged pions and kaons. Comparisons with models suggest that a mean field potential is required to describe these results, and that the triangular shape of the participant nucleons is the result of stopping and nuclear geometry.

0 data tables match query

Version 2
Search for new physics with emerging jets in proton-proton collisions at $\sqrt{s} = 13~\mathrm{TeV}$

The CMS collaboration
CMS-PAS-EXO-22-015, 2024.
Inspire Record 2761948 DOI 10.17182/hepdata.147271

A search for emerging jets produced in proton-proton collisions at a center-of-mass energy of $13~\mathrm{TeV}$ is performed using data collected by the CMS experiment corresponding to an integrated luminosity of $138~\mathrm{fb}^{-1}$. This search examines a hypothetical dark quantum chromodynamics (QCD) sector that couples to the standard model (SM) through a scalar mediator. The scalar mediator decays into an SM quark and a dark sector quark. As the dark sector quark showers and hadronizes, it produces long-lived dark mesons that subsequently decay into SM particles, resulting in a jet, known as an emerging jet, with multiple displaced vertices. This search looks for pair production of the scalar mediator at the LHC, which yields events with two SM jets and two emerging jets at leading order. The results are interpreted using two dark sector models with different flavor structures, and exclude mediator masses up to 1950 (1800) GeV for an unflavored (flavor-aligned) dark QCD model.

0 data tables match query

Measurements of directed, elliptic, and triangular flow in Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 94 (2016) 054910, 2016.
Inspire Record 1394897 DOI 10.17182/hepdata.146752

Measurements of anisotropic flow Fourier coefficients ($v_n$) for inclusive charged particles and identified hadrons $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ produced at midrapidity in Cu+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The particle azimuthal distributions with respect to different order symmetry planes $\Psi_n$, for $n$~=~1, 2, and 3 are studied as a function of transverse momentum $p_T$ over a broad range of collisions centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared to hydrodynamical and transport model calculations. We also compare these Cu$+$Au results with those in Cu$+$Cu and Au$+$Au collisions at the same $\sqrt{s_{_{NN}}}$, and find that the $v_2$ and $v_3$, as a function of transverse momentum, follow a common scaling with $1/(\varepsilon_n N_{\rm part}^{1/3})$.

0 data tables match query

Search for baryon number violation in top quark production and decay using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-TOP-22-003, 2024.
Inspire Record 2762774 DOI 10.17182/hepdata.138414

A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138 fb$^{-1}$. Candidate events are selected by requiring two oppositely-charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark. Multivariate discriminants are used to separate the signal from the background. No significant deviation from the standard model prediction is observed. Upper limits are placed on the strength of baryon number violating couplings. For the first time the production of single top quarks via baryon number violating interactions is studied. This allows the search to set the most stringent constraints to date on the branching fraction of the top quark decay to a lepton, an up-type quark (u or c), and a down-type quark (d, s, or b). The results improve the previous bounds by three to six orders of magnitude based on the fermion flavor combination of the baryon number violating interactions.

0 data tables match query

Observation of the $\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$ decay and studies of the $\Xi_\mathrm{b}^{\ast{}0}$ baryon in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-23-002, 2024.
Inspire Record 2762139 DOI 10.17182/hepdata.146756

The first observation of the decay $\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$ and measurement of the branching ratio of $\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$ to $\Xi^-_\mathrm{b}$$\to$ J/$\psi$$\Xi^-$ are presented. The J/$\psi$ and $\psi$(2S) mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The branching fraction ratio is measured to be $\mathcal{B}$($\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$)/$\mathcal{B}$($\Xi^-_\mathrm{b}$$\to$ J/$\psi$$\Xi^-$) = 0.84$^{+0.21}_{-0.19}$ (stat) $\pm$ 0.10 (syst) $\pm$ 0.02 ($\mathcal{B}$), where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the $\Xi_\mathrm{b}^{\ast{}0}$ baryon mass and natural width are also presented, using the $\Xi_\mathrm{b}^-\pi^+$ final state, where the $\Xi^-_\mathrm{b}$ baryon is reconstructed through the decays J/$\psi \Xi^-$, $\psi$(2S)$\Xi^-$, J/$\psi \Lambda$K$^-$, and J/$\psi \Sigma^0$K$^-$. Finally, the fraction of the $\Xi^-_\mathrm{b}$ baryons produced from $\Xi_\mathrm{b}^{\ast{}0}$ decays is determined.

0 data tables match query

Measurement of the relative yields of $\psi(2S)$ to $\psi(1S)$ mesons produced at forward and backward rapidity in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 95 (2017) 034904, 2017.
Inspire Record 1487575 DOI 10.17182/hepdata.149529

The PHENIX Collaboration has measured the ratio of the yields of $\psi(2S)$ to $\psi(1S)$ mesons produced in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV over the forward and backward rapidity intervals $1.2<|y|<2.2$. We find that the ratio in $p$$+$$p$ collisions is consistent with measurements at other collision energies. In collisions with nuclei, we find that in the forward ($p$-going or $^{3}$He-going) direction, the relative yield of $\psi(2S)$ mesons to $\psi(1S)$ mesons is consistent with the value measured in \pp collisions. However, in the backward (nucleus-going) direction, the $\psi(2S)$ is preferentially suppressed by a factor of $\sim$2. This suppression is attributed in some models to breakup of the weakly-bound $\psi(2S)$ through final state interactions with comoving particles, which have a higher density in the nucleus-going direction. These breakup effects may compete with color screening in a deconfined quark-gluon plasma to produce sequential suppression of excited quarkonia states.

0 data tables match query

Search for long-lived particles decaying to final states with a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-23-014, 2024.
Inspire Record 2760892 DOI 10.17182/hepdata.146759

An inclusive search for long-lived exotic particles (LLPs) decaying to final states with a pair of muons is presented. The search uses data corresponding to an integrated luminosity of 36.6 fb$^{-1}$ collected by the CMS experiment from the proton-proton collisions at $\sqrt{s}$ = 13.6 TeV in 2022, the first year of Run 3 of the CERN LHC. The experimental signature is a pair of oppositely charged muons originating from a common vertex spatially separated from the proton-proton interaction point by distances ranging from several hundred $\mu$m to several meters. The sensitivity of the search benefits from new triggers for displaced dimuons developed for Run 3. The results are interpreted in the framework of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons, and of an $R$-parity violating supersymmetry model, in which long-lived neutralinos decay to a pair of muons and a neutrino. The limits set on these models are the most stringent to date in wide regions of lifetimes for LLPs with masses larger than 10 GeV.

0 data tables match query

Search for long-lived particles using displaced vertices and missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-020, 2024.
Inspire Record 2761908 DOI 10.17182/hepdata.147272

A search for the production of long-lived particles in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC is presented. The search is based on data collected by the CMS experiment in 2016-2018, corresponding to a total integrated luminosity of 137 fb$^{-1}$. This search is designed to be sensitive to long-lived particles with mean proper decay lengths between 0.1 and 1000 $\mu$m, whose decay products produce a final state with at least one displaced vertex and missing transverse momentum. A machine learning algorithm, which improves the background rejection power by more than an order of magnitude, is applied to improve the sensitivity. The observation is consistent with the standard model background prediction, and the results are used to constrain split supersymmetry (SUSY) and gauge-mediated SUSY breaking models with different gluino mean proper decay lengths and masses. This search is the first CMS search that shows sensitivity to hadronically decaying long-lived particles from signals with mass differences between the gluino and neutralino below 100 GeV. It sets the most stringent limits to date for split-SUSY models and gauge-mediated SUSY breaking models with gluino proper decay length less than 6 $\mu$m.

0 data tables match query

Extracting the speed of sound in the strongly interacting matter created in ultrarelativistic lead-lead collisions at the LHC

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIN-23-003, 2024.
Inspire Record 2747107 DOI 10.17182/hepdata.146016

Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we extracted the speed of sound in this medium created using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb$^{-1}$. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of 0.241 $\pm$ 0.002 (stat) $\pm$ 0.016 (syst) in natural units. The effective medium temperature, estimated using the mean transverse momentum, is 219 $\pm$ 8 (syst) MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions.

0 data tables match query

A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-20-014, 2024.
Inspire Record 2760468 DOI 10.17182/hepdata.145997

A search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H $to$ bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B $\to$ bH and 100% B $\to$ bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.

0 data tables match query

Search for nearly mass-degenerate higgsinos using low-momentum mildly-displaced tracks in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-012, 2024.
Inspire Record 2751400 DOI 10.17182/hepdata.146944

Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass-splitting is $\mathcal{O}$(1 GeV). This Letter presents a novel search for nearly mass-degenerate higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass-splittings between the lightest charged and neutral higgsinos from 0.3 GeV to 0.9 GeV is excluded at 95% confidence level, with a maximum reach of approximately 170 GeV in the higgsino mass.

0 data tables match query

Measurement of $Z$ boson production cross-section in $pp$ collisions at $\sqrt{s} = 5.02$ TeV

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
JHEP 02 (2024) 070, 2024.
Inspire Record 2690798 DOI 10.17182/hepdata.147274

The first measurement of the $Z$ boson production cross-section at centre-of-mass energy $\sqrt{s} = 5.02\,$TeV in the forward region is reported, using $pp$ collision data collected by the LHCb experiment in year 2017, corresponding to an integrated luminosity of $100 \pm 2\,\rm{pb^{-1}}$. The production cross-section is measured for final-state muons in the pseudorapidity range $2.0<\eta<4.5$ with transverse momentum $p_{\rm{T}}> 20\,\rm{GeV/}\it{c}$. The integrated cross-section is determined to be \[ \sigma_{Z \rightarrow \mu^{+}\mu^{-}} = 39.6 \pm 0.7\,(\rm{stat}) \pm 0.6\,(\rm{syst}) \pm 0.8\,(\rm{lumi}) \ \rm{pb} \] for the di-muon invariant mass in the range $60<M_{\mu\mu}<120\,\rm{GeV/}\it{c^{2}}$. This result and the differential cross-section results are in good agreement with theoretical predictions at next-to-next-to-leading order in the strong coupling. Based on a previous LHCb measurement of the $Z$ boson production cross-section in $p$Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV, the nuclear modification factor $R_{p\rm{Pb}}$ is measured for the first time at this energy. The measured values are $1.2^{+0.5}_{-0.3}\,(\rm{stat}) \pm 0.1\,(\rm{syst})$ in the forward region ($1.53<y^*_{\mu}<4.03$) and $3.6^{+1.6}_{-0.9}\,(\rm{stat}) \pm 0.2\,(\rm{syst})$ in the backward region ($-4.97<y^*_{\mu}<-2.47$), where $y^*_{\mu}$ represents the muon rapidity in the centre-of-mass frame.

0 data tables match query

Search for fractionally charged particles in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-19-006, 2024.
Inspire Record 2758805 DOI 10.17182/hepdata.146758

A search is presented for fractionally charged particles with charge below 1$e$, using their small energy loss in the tracking detector as a key variable to observe a signal. The analyzed data set corresponds to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions collected at $\sqrt{s}$ = 13 TeV in 2016-2018 at the CERN LHC. This is the first search at the LHC for new particles with charges between $e/$3 and $e$. Masses up to 640 GeV and charges as low as $e/$3 are excluded at 95% confidence level. These are the most stringent limits to date for the considered Drell-Yan-like production mode.

0 data tables match query

Version 2
Observation of WW$\gamma$ production and search for H$\gamma$ production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 121901, 2024.
Inspire Record 2709669 DOI 10.17182/hepdata.144361

The observation of WW$\gamma$ production in proton-proton collisions at a center-of-mass energy of 13 TeV with an integrated luminosity of 138 fb$^{-1}$ is presented. The observed (expected) significance is 5.6 (5.1) standard deviations. Events are selected by requiring exactly two leptons (one electron and one muon) of opposite charge, moderate missing transverse momentum, and a photon. The measured fiducial cross section for WW$\gamma$ is 5.9 $\pm$ 0.8 (stat) $\pm$ 0.8 (syst) $\pm$ 0.7 (modeling) fb, in agreement with the next-to-leading order quantum chromodynamics prediction. The analysis is extended with a search for the associated production of the Higgs boson and a photon, which is generated by a coupling of the Higgs boson to light quarks. The result is used to constrain the Higgs boson couplings to light quarks.

0 data tables match query

Search for pair production of scalar and vector leptoquarks decaying to muons and bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-21-019, 2024.
Inspire Record 2758137 DOI 10.17182/hepdata.146074

A search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date.

0 data tables match query