A Study of Multi-Jet Events in e+ e- Annihilation

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 97 (1980) 459-464, 1980.
Inspire Record 155318 DOI 10.17182/hepdata.27141

A multi-jet analysis of hadronic final states from e + e − annihilation in the energy range 27 < E cm < 32GeV is presented. The analysis uses a cluster method to identify the jets in a hadronic event. The distribution of the number of jets per event is compared with several models. From the number of identified coplanar three-jet events the strong coupling constant is determined to beα S = 0.15 ± 0.03 (stat. error) ± 0.02 (syst. error). The inferred energy distribution of the most energetic parton is in good agreement with the first-order QCD prediction. A scalar-gluon model is strongly disfavoured. Higher-twist contributions to the three-jet sample are found to be small.

1 data table

No description provided.


Inclusive Charged Particle Distribution in Nearly Threefold Symmetric Three Jet Events at $e$({CM}) = 29-{GeV}

Petersen, A. ; Abrams, G.S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 55 (1985) 1954, 1985.
Inspire Record 216850 DOI 10.17182/hepdata.20285

We report a measurement of the inclusive charged-particle distribution for gluon jets derived from nearly threefold-symmetric three-jet events taken at center-of-mass energy of 29 GeV in e+e− annihilation. The charged-particle spectrum for these jets is observed to fall off more rapidly than those of quark jets of the same energy.

1 data table

Errors include both statistics and the uncertainty in correction factors. X is defined at the energy of the individual particle divided by the total energy of the jet to which it is assigned.


Studies of Jet Production Rates in $e^+ e^-$ Annihilation at $e$({CM}) = 29-{GeV}

Bethke, S. ; Abrams, G. ; Adolphsen, C.E. ; et al.
Z.Phys.C 43 (1989) 325, 1989.
Inspire Record 277772 DOI 10.17182/hepdata.15472

Production rates of multijet hadronic final states are studied ine+e− annihilation at 29 GeV center of mass energy. QCD shower model calculations with exact first order matrix element weighting at the first gluon vertex are capable of reproducing the observed multijet event rates over a large range of jet pair masses. The method used to reconstruct jets is well suited for directly comparing experimental jet rates with parton rates calculated in perturbative QCD. Evidence for the energy dependene of αs is obtained by comparing the observed production rates of 3-jet events with results of similar studies performed at higher center of mass energies.

2 data tables

Observed production rates relative to the total hadronic cross section.

Production rates corrected for fragmentation, initial state radiation and detector effects.


First Measurements of Hadronic Decays of the $Z$ Boson

The MARK-II collaboration Abrams, G.S. ; Adolphsen, Chris ; Aleksan, R. ; et al.
Phys.Rev.Lett. 63 (1989) 1558, 1989.
Inspire Record 282670 DOI 10.17182/hepdata.20044

We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision.

5 data tables

Corrected event shape distributions.

Corrected event shape distributions.

Corrected event shape distributions.

More…

A Study of Jet Production Rates and a Test of QCD on the Z0 Resonance

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 235 (1990) 389-398, 1990.
Inspire Record 283783 DOI 10.17182/hepdata.29753

Relative production rates of multijet hadronic final states of Z 0 boson decays, observed in e + e − annihilation around 91 GeV centre of mass energy, are presented. The data can be well described by analytic O( α s 2 ) QCD calculations and by QCD shower model calaculations with parameters as determined at lower energies. A first judgement of Λ MS and of the renormalization scale μ 2 in O( α s 2 ) QCD results in values similar to those obtained in the continuum of e + e − annihilations. Significant scaling violations are observed when the 3-jet fractions are compared to the corresponding results from smaller centre of mass energies. They can be interpreted as being entirely due tot the energy dependence of α s , as proposed by the nonabelian nature of QCD, The possibility of an energy independent coupling constant can be excluded with a significance of 5.7 standard deviations.

1 data table

Data are corrected for final acceptance and resolution of the detector. No explicit corrections for hadronisation effects are applied.


A Comparison of jet production rates on the Z0 resonance to perturbative QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 247 (1990) 167-176, 1990.
Inspire Record 297698 DOI 10.17182/hepdata.29653

The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].

2 data tables

Corrected jet rates.

Second systematic error is theoretical.


A Test of QCD based on three jet events from Z0 decays

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 263 (1991) 551-562, 1991.
Inspire Record 315954 DOI 10.17182/hepdata.38291

We present a study of 43 000 3-jet events from Z 0 boson decays. Both the measured jet energy distributions and the event orientation are reproduced by second order QCD. An alternative model with scalar gluons fails to describe the data.

1 data table

Jets are ordered according their energy: E1 > E2 > E3.


Measurement of three jet distributions sensitive to the gluon spin in e+ e- annihilations at S**(1/2) = 91-GeV

The OPAL collaboration Alexander, G. ; Allison, John ; Allport, P.P. ; et al.
Z.Phys.C 52 (1991) 543-550, 1991.
Inspire Record 317142 DOI 10.17182/hepdata.14852

None

4 data tables

Data at Parton level.

Ratio data/(Monte Carlo) at Parton level.

Data at Parton level.. Distribution of Ellis-Karliner angle.

More…

A Direct observation of quark - gluon jet differences at LEP

The OPAL collaboration Alexander, G. ; Allison, J. ; Allport, P.P. ; et al.
Phys.Lett.B 265 (1991) 462-474, 1991.
Inspire Record 316872 DOI 10.17182/hepdata.48454

Quark and gluon jets in e + e − three-jet events at LEP are identified using lepton tagging of quark jets, through observation of semi-leptonic charm and bottom quark decays. Events with a symmetry under transposition of the energies and directions of a quark and gluon jet are selected: these quark and gluon jets have essentially the same energy and event environment and as a consequence their properties can be compared directly. The energy of the jets which are studied is about 24.5 GeV. In the cores of the jets, gluon jets are found to yield a softer particle energy spectrum than quark jets. Gluon jets are observed to be broader than quark jets, as seen from the shape of their particle momentum spectra both in and out of the three-jet event plane. The greater width of gluon jets relative to quark jets is also visible from the shapes of their multiplicity distributions. Little difference is observed, however, between the mean value of particle multiplicity for the two jet types.

1 data table

QUARK means QUARK or QUARKBAR.


Measurement of the strong coupling constant alpha-s for bottom quarks at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 271 (1991) 461-467, 1991.
Inspire Record 318981 DOI 10.17182/hepdata.38288

We have measured the ratio of the strong coupling constants α s for bottom quarks and light quarks at the Z 0 resonance, in order to test the flavour independence of the strong interaction. The coupling strength α s has been determined from the fraction of events with three jets, measured for a sample of all hardronic events, and for inclusive muon and electron events. The b purity is evaluated to be 22% for the first data set and 87% for the inclusive lepton sample. We find α s ( b ) α s ( udsc ) =1.00± 0.05 ( stat. )±0.06 ( syst. ) .

1 data table

No description provided.