Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1-3 GeV with the T2K INGRID detector

The T2K collaboration Abe, K. ; Andreopoulos, C. ; Antonova, M. ; et al.
Phys.Rev.D 93 (2016) 072002, 2016.
Inspire Record 1394549 DOI 10.17182/hepdata.80058

We report a measurement of the $\nu_{\mu}$-nucleus inclusive charged current cross section (=$\sigma^{cc}$) on iron using data from exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0$^\circ$ to 1.1$^\circ$. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be $\sigma^{cc}(1.1\text{ GeV}) = 1.10 \pm 0.15$ $(10^{-38}\text{cm}^2/\text{nucleon})$, $\sigma^{cc}(2.0\text{ GeV}) = 2.07 \pm 0.27$ $(10^{-38}\text{cm}^2/\text{nucleon})$, and $\sigma^{cc}(3.3\text{ GeV}) = 2.29 \pm 0.45$ $(10^{-38}\text{cm}^2/\text{nucleon})$, at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections.

1 data table

Results of the $\nu_{\mu}$ CC inclusive cross section on Fe.


Measurement of Partonic Nuclear Effects in Deep-Inelastic Neutrino Scattering using MINERvA

The MINERvA collaboration Mousseau, J. ; Wospakrik, M. ; Aliaga, L. ; et al.
Phys.Rev.D 93 (2016) 071101, 2016.
Inspire Record 1416818 DOI 10.17182/hepdata.77044

The MINERvA collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5 - 50 GeV. Good agreement is found between the data and predicted ratios, based on charged-lepton nucleus scattering, at medium x and low neutrino energies. However, the data rate appears depleted in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high neutrino energy , is consistent with previous MINERvA observations and with the predicted onset of nuclear shadowing with the the axial-vector current in neutrino scattering.

18 data tables

Ratio of the total DIS cross section on C to CH as a function of $E_\nu$.

Statistical error matrix of the ratio of the total DIS cross section on C to CH as a function of $E_\nu$.

Systematic error matrix of the ratio of the total DIS cross section on C to CH as a function of $E_\nu$.

More…

Precise measurement of neutrino and anti-neutrino differential cross sections.

The NuTeV collaboration Tzanov, M. ; Naples, D. ; Boyd, S. ; et al.
Phys.Rev.D 74 (2006) 012008, 2006.
Inspire Record 691719 DOI 10.17182/hepdata.11120

The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F_2(x,Q^2) and xF_3(x,Q^2), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.

159 data tables

Measurement of F2 at X = 0.015.

Measurement of F2 at X = 0.045.

Measurement of F2 at X = 0.080.

More…

A Next-to-leading order QCD analysis of neutrino - iron structure functions at the Tevatron

Seligman, William Glenn ; Shaevitz, Michael ;
FERMILAB-THESIS-1997-21, 1997.
Inspire Record 441652 DOI 10.17182/hepdata.37291

Nucleon structure functions measured in neutrino-iron and antineutrinoiron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 Ge V. The structure functions $F_2$ and $xF_3$ are compared with the the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives NL0(4) . 2 value of $\Lambda^{NLO,(4)}_{\overline MS}$ = 337 ± 28 (exp.) MeV, which corresponds to $\alpha_s$ ($M^2_z$) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by $xG(x,Q^2_0 = 5 GeV^2$ ) = (2.22±0.34) x ($1-x)^{4.65 \pm 0.68}$

3 data tables

The cross sections are normalized to the world average of SIG(NUMU)/E/A = 0.677E-38 cm^2/GeV as no absolute flux measurement was made in this experiment.

These cross sections are normalized to the world average of SIG(NUMU)/E/A =0.677E-38 cm^2/GeV multiplied by the world average of SIG(NUMUBAR)/SIG(NUMU) i n c l u d i n g this experiment.

No description provided.


A measurement of alpha(s)(Q**2) from the Gross-Llewellyn Smith sum rule.

Kim, J.H. ; Harris, Deborah A. ; Arroyo, C.G. ; et al.
Phys.Rev.Lett. 81 (1998) 3595-3598, 1998.
Inspire Record 475039 DOI 10.17182/hepdata.19536

We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared ($Q^{2}$), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for $1 < Q^2 < 15 GeV^2/c^2$. A comparison with the order $\alpha^{3}_{s}$ theoretical predictions yields a determination of $\alpha_{s}$ at the scale of the Z-boson mass of $0.114 \pm^{.009}_{.012}$. This measurement provides a new and useful test of perturbative QCD at low $Q^2$, because of the low uncertainties in the higher order calculations.

3 data tables

No description provided.

Total GLS integral and ALPHAS for each bin in Q2. Systematic errors are correlated in different Q2 bins. The second DSYS error in ALPHAS is due to the uncertainty in the theory.

ALPHAS extrapolated to the Z0 mass. The second DSYS error is due to the uncertainty in the theory.


Dependence of nu nucleus cross-sections on the mass number

Borer, K. ; Hahn, B. ; Hofer, H. ; et al.
Phys.Lett.B 30 (1969) 572-575, 1969.
Inspire Record 63243 DOI 10.17182/hepdata.50061

High energy v -nucleus cross sections have been compared for Pb, Fe, Al and C as target nuclei, exposed to the CERN v -beam. The events with θ vμ < 29 0 and p μ ⪆ 1 GeV /c have rates in the ratio of the mass number of the nuclei. Also a restricted sample with q 2 ⪅ 0.1 (GeV/ c ) 2 and θ vμ < 5 0 does not reveal a theoretically predicted deviation from A -proportionality, although due to the limited statistical accuracy in this restricted sample an “ A 2 3 - contribution ” of several tenths cannot be excluded either.

4 data tables

Only statistical error is presented.

Only statistical error is presented.

Only statistical error is presented.

More…

Normalized Small Y Cross-Sections for Neutrinos and anti-neutrinos at High-Energy

Barish, B.C. ; Bartlett, J.F. ; Bodek, A ; et al.
Phys.Rev.Lett. 39 (1977) 741, 1977.
Inspire Record 5717 DOI 10.17182/hepdata.50114

We present results on flux-normalized neutrino and antineutrino cross sections near y=0 from data obtained in the Fermilab narrow-band beam. We conclude that values of σ0=dσdy|y=0 are consistent with rising linearly with energy over the range 45<~Eν<~20.5 GeV. The separate averages of ν and ν¯, each measured to 4%, are equal to well within the errors. The best fit for the combined data gives σ0E=(0.719±0.035)×10−38 cm2/GeV at an average Eν of 100 GeV.

2 data tables

FE nucleus. The SIG/Enu is fitted to CONST(N=SIG)+CONST(N=T)*E.

FE nucleus. Averaged over the energies and beams.


A Measurement of $\Lambda_{\overline{MS}}$ from $\nu_{\mu}$ - Fe Nonsinglet Structure Functions at the Fermilab Tevatron

Quintas, P.Z. ; Leung, W.C. ; Mishra, S.R. ; et al.
Phys.Rev.Lett. 71 (1993) 1307-1310, 1993.
Inspire Record 336860 DOI 10.17182/hepdata.19733

The CCFR Collaboration presents a measurement of scaling violations of the nonsinglet structure function and a comparison to the predictions of perturbative QCD. The value of ΛQCD, from the nonsinglet evolution with Q2>15 GeV2 and in the modified minimal-subtraction renormalization scheme, is found to be 210±28(stat)±41(syst) MeV.

1 data table

The CONST(N=LAMBDA-QCD) is extracted from the measurement of scaling violations of the nonsinglet structure function.


Nucleon structure functions from high energy neutrino interactions

Oltman, E. ; Auchincloss, Priscilla S. ; Blair, R.E. ; et al.
Z.Phys.C 53 (1992) 51-71, 1992.
Inspire Record 335706 DOI 10.17182/hepdata.1433

Structure functions obtained from high energy neutrino and antineutrino scattering from an iron target are presented. These were extracted from the combined data of Fermilab experiments E616 and E701; these utilized narrow band beam runs between 1979–1982. The structure functions are used to test the validity of quarkparton model (QPM) predictions and to extract the QCD scale parameter Λ from fits to the Altarelli-Parisi equations.

22 data tables

No description provided.

No description provided.

No description provided.

More…

Neutrino production of same sign dimuons at the Fermilab Tevatron

Sandler, P.H. ; Kinnel, T.S. ; Smith, W.H. ; et al.
Z.Phys.C 57 (1993) 1-12, 1993.
Inspire Record 32390 DOI 10.17182/hepdata.14493

The rate of neutrino- and antineutrino-induced prompt same-sign dimuon production in steel was measured using a sample of μ−μ− events and 25 μ+μ+ events withPμ>9 GeV/c, produced in 1.5 millionvμ and 0.3 million\(\overline {v_\mu}\) induced charged-current events with energies between 30 GeV and 600 GeV. The data were obtained with the Chicago-Columbia-Fermilab-Rochester (CCFR) neutrino detector in the Fermilab Tevatron Quadrupole Triplet Neutrino Beam during experiments E 744 and E 770. After background subtraction, the prompt rate of same-sign dimuon production is (0.53±0.24)×10−4 pervμ charged-current event and (0.52±0.33)×10−4 per\(\overline {v_\mu}\) charged-current event. The kinematic distributions of the same-sign dimuon events after background subtraction are consistent with those of the non-prompt background due to meson decays in the hadron shower of a charged-current event. Calculations ofc\(\bar c\) gluon bremsstrahlung, based on improved measurements of the charm mass parameter and nucleon structure functions by the CCFR collaboration, yield a prompt rate of (0.09±0.39)×10−4 pervμ charged-current event. In this case,c\(\bar c\) gluon bremsstrahlung is probably not an observable source of prompt same-sign dimuons.

2 data tables

Rate of dimuon production per charged current event.

Rate of dimuon production per charged current event.


A Measurement of the Neutral Current Electroweak Parameters using the Fermilab Narrow Band Neutrino Beam

Reutens, P.G. ; Merritt, F.S. ; Oreglia, M.J. ; et al.
Z.Phys.C 45 (1990) 539-550, 1990.
Inspire Record 305243 DOI 10.17182/hepdata.15280

We report a measurement of the electroweak parameters sin2θw and ϱ based on the ratios of neutral current to charged current events measured in the Fermilab narrow-band neutrino beam at energies of 30–240 GeV. The data are fully corrected for radiative effects, heavy-quark production, and other effects. The best value for sin2θw obtained, sin2θw=0.239±0.011, is consistent with the most recent values fromW andZ production, as well as from other neutrino experiments.

2 data tables

No description provided.

No description provided.


Electroweak Parameters From a High Statistics Neutrino Nucleon Scattering Experiment

Blondel, A. ; Bockmann, P. ; Burkhardt, .H. ; et al.
Z.Phys.C 45 (1990) 361-379, 1990.
Inspire Record 287166 DOI 10.17182/hepdata.15282

The final results from the WA 1/2 neutrino experiment in the 1984 CERN 160 GeV narrow band beam are presented. The ratiosRν and\(R_{\bar v} \) of neutral to charged current interaction rates of neutrinos and antineutrinos in iron are measured to beRν=0.3072±0.0033 and\(R_{\bar v} \)=0.382±0.016. A value of the electroweak parameter sin2 θw = 1 −mW2/mZ2 is extracted fromRν. The result is sin2 θw =0.228+0.013(mc−1.5)±0.0003 (theor.) wheremc is the mass of the charmed quark in GeV formt=60 GeV,MH=100 GeV, ρ=1. CombiningRν and\(R_{\bar v} \) one obtains a value for ρ=0.991+0.023(mc−1.5)±0.020(exp.). Alternatively,Rν and\(R_{\bar v} \) yield a precise value of the ratio of intermediate vector boson massesmW/mZ=0.880−0.007(mc−1.5)±0.002(exp.)±0.002(theor.). Comparison of these results with those from direct measurements of the vector boson masses are presented. In a model-independent analysis the left- and right-handed neutral current coupling constants,gL2 andgR2, are determined.

3 data tables

No description provided.

No description provided.

No description provided.


A Precision Measurement of sin**2theta(W) from Semileptonic Neutrino Scattering

Abramowicz, H. ; Belusevic, R. ; Blondel, A. ; et al.
Phys.Rev.Lett. 57 (1986) 298, 1986.
Inspire Record 228111 DOI 10.17182/hepdata.20208

The ratio Rν of the neutral- to charged-current cross sections of neutrinos in iron has been measured in an exposure of the CERN-Dortmund-Heidelberg-Saclay neutrino detector to a 160-GeV/c neutrino narrow-band beam at the CERN Super Proton Synchrotron. The result is Rν=0.3072±0.0025(stat)±0.0020(syst), for hadronic energy greater than 10 GeV. The electroweak mixing parameter is sin2θW=0.225±0.005(expt)±0.003(theor)+0.013(mc−1.5 GeVc2), where mc is the charm-quark mass.

1 data table

No description provided.


NEUTRAL CURRENT COUPLING IN HIGH-ENERGY NEUTRINO INTERACTIONS.

Merritt, F.S. ; Barish, B.C. ; Bartlett, J.F. ; et al.
Phys.Rev.D 17 (1978) 2199-2205, 1978.
Inspire Record 132560 DOI 10.17182/hepdata.24431

We present measured hadron energy distributions for the reactions ν(ν¯)+N→ν(ν¯)+hadrons at high energy, as well as for the similar charged-current interactions. Insofar as possible, the determination of these distributions avoids any a priori assumptions about either the neutral-current or the charged-current interactions. We further analyze the neutral-current distributions within the framework of specific models, particularly the scaling model, to obtain a positive-helicity component P=0.36±0.10, which lies between pure V−A and pure V or A, and a coupling strength of g0=0.31±0.03 relative to the charged-current interaction. These coupling parameters agree well with the predictions of the Weinberg-Salam model with sin2θW=0.33±0.07.

2 data tables

No description provided.

No description provided.


Neutrino Production of Opposite Sign Dimuons at Tevatron Energies

Foudas, C. ; Bachmann, K.T. ; Bernstein, R.H. ; et al.
Phys.Rev.Lett. 64 (1990) 1207, 1990.
Inspire Record 26417 DOI 10.17182/hepdata.20000

We have measured the strange-quark content of the nucleon, ηs=−0.08+0.012, and the Kobayashi-Maskawa matrix element ‖Vcd‖=0.220−0.018+0.015 using a sample of 1797 νμ- and ν¯μ-induced μ−μ+ events with Pμ≥9 GeV/c and 30≤Eν≤600 GeV. The data are consistent with the slow-rescaling hypothesis of charm production in ν-N scattering and within this formalism yield a value of the charm-quark mass parameter mc=1.31−0.48+0.64 GeV/c2. .AE

2 data tables

No description provided.

No description provided.


Measurement of the neutral to charged current cross section ratio in neutrino and antineutrino interactions.

Holder, M. ; Knobloch, J. ; May, J. ; et al.
Phys.Lett.B 71 (1977) 222, 1977.
Inspire Record 120776 DOI 10.17182/hepdata.27510

We report on the analysis of inclusive neutral current events produced in neutrino and antineutrino narrow band beams. We find for incident neutrino energies in the range 12–200 GeV and for hadron energies above 12 GeV a neutral to charged current cross-section ratio of R v = 0.293 ± 0.010 for incident neutrinos, and R v = 0.35 ± 0.03 for antineutrinos. These ratios are consistent with the Weinberg-Salam model, with sin 2 θ w = 0.24 ± 0.02.

2 data tables

No description provided.

No description provided.


Measurement of $\nu$ and $\bar{\nu}$ structure functions in hydrogen and iron

Abramowicz, H. ; Hansl-Kozanecka, T. ; May, J. ; et al.
Z.Phys.C 25 (1984) 29-43, 1984.
Inspire Record 201386 DOI 10.17182/hepdata.49653

The CDHS neutrino detector has been used to measure events originating in a tank of liquid hydrogen and in the iron of the detector. Total cross-sections, differential cross-sections, and structure functions are given for hydrogen and compared with those in iron. The measurements are in agreement with the expectations of the quark parton model. No significant differences indicative of nuclear binding effects in corresponding structure functions of protons and iron are observed. This may be of special interest in the case of the sea structure functions, since large differences are expected in some models.

5 data tables

No description provided.

No description provided.

No description provided.

More…