Determination of the parton distributions and structure functions of the proton from neutrino and anti-neutrino reactions on hydrogen and deuterium

The Birmingham-CERN-Imperial College-Muenchen(MPI)-Oxford-University & College London collaborations Jones, G.T. ; Jones, R.W.L. ; Kennedy, B.W. ; et al.
Z.Phys.C 62 (1994) 575-600, 1994.
Inspire Record 383020 DOI 10.17182/hepdata.14206

This analysis is based on data from neutrino and antineutrino scattering on hydrogen and deuterium, obtained with BEBC in the (anti) neutrino wideband beam of the CERN SPS. The parton momentum distrib

12 data tables

No description provided.

No description provided.

No description provided.

More…

Diffractive production of rho mesons and of rho pi systems by neutrinos and anti-neutrinos on protons

The WA21 collaboration Jones, G.T. ; Jones, R.W.L. ; Kennedy, B.W. ; et al.
Z.Phys.C 58 (1993) 375-386, 1993.
Inspire Record 363176 DOI 10.17182/hepdata.14426

Evidence is presented for diffractive production of ρ-mesons and of ρπ-systems invp and\(\bar \nu p\) chargedcurrent interactions. In the (anti-)neutrino energy range 10 GeV<Ev<60 GeV the cross sections for diffractive ρ and diffractive ρπ production are found to be (0.64±0.14 (stat.)±0.08 (syst.))% and (0.28±0.08 (stat.)±0.04 (syst.))% of the charged-current cross section. The diffractive ρπ signal is consistent with being entirely due to diffractivea1 production. However, the data cannot distinguish between diffractivea1 and diffractive nonresonant ρπ production. The experimental distributions ofW, Q2,xBj andyBj for diffractive ρ and ρπ events are consistent with model predictions.

4 data tables

No description provided.

No description provided.

No description provided.

More…

The Cross-section Ratio $\sigma(\nu n)/\sigma(\nu p)$ for Charged Current and Neutral Current Interactions Below 10-{GeV}

Jacques, P.F. ; Kalelkar, M. ; Miller, P.A. ; et al.
Phys.Rev.D 24 (1981) 1067-1070, 1981.
Inspire Record 165487 DOI 10.17182/hepdata.24072

We have measured the cross-section ratio σ(νn)σ(νp) for both charged-current and neutral-current interactions at low energy. The experiment used the wide-band neutrino beam at Brookhaven National Laboratory. The detector was the 7-foot bubble chamber filled with a 62% neon-hydrogen mixture. For charged-current events we find that the ratio reaches an asymptotic value of 1.80±0.19 for neutrino energies above 1 GeV. For neutral-current events we measure the ratio to be 1.07±0.24. Both of these results are in agreement with the quark model.

2 data tables

No description provided.

No description provided.


Determination of the Neutral Current Chiral Coupling Constants From $U(2)_L$, $U(2)_R$, $d(2)_L$ and $d(2)_R$ From a Neutrino and Anti-neutrino Deuterium Experiment

The WA25 collaboration Allasia, D. ; Angelini, C. ; Baldini, A. ; et al.
Nucl.Phys.B 307 (1988) 1-18, 1988.
Inspire Record 260699 DOI 10.17182/hepdata.33342

The ratios of neutral-current to charged-current cross sections of v and v interactions, seperately, on proton and neutron targets have been measured. The Big European Bubble Chamber (BEBC), filled with deuterium and equipped with an external muon identifier (EMI) and an internal picket fence (IPF), was exposed to the CERN SPS (anti)neutrino wide-band beam. The measured ratios are R v p= = 0.405 ± 0.024 ± 0.021 , R v n = 0.243 ± 0.013 ± 0.016, R v p = 0.301 ± 0.027 ± 0.024 and R v n = 0.490 ± 0.050 ± 0.037 . (The first error is statistical and the second systematic). From combinations of these ratios the following neutral-current chiral coupling constants have been determined: u L 2 = 0.099 ± 0.018 ± 0.008, d L 2 = 0.202 ± 0.020 ± 0.019, u R 2 = 0.020 ± 0.016 ± 0.009 and d R 2 = 0.002 ± 0.017 ± 0.010. These results agree with the predictions of the SU(2) × U(1) standard electroweak model. Assuming ϱ = 1, the corresponding value of sin 2 θ w is found to be 0.247 ± 0.029, whereas a two-parameter fit to the data yields sin 2 θ w = 0.243 ± 0.046 and ϱ = 0.996 ± 0.041.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Determination of the Neutral to Charged Current Cross-section Ratio for Neutrino Interactions on Protons

The BEBC TST Neutrino collaboration Armenise, N. ; Calicchio, M. ; Erriquez, O. ; et al.
Phys.Lett.B 122 (1983) 448-454, 1983.
Inspire Record 182504 DOI 10.17182/hepdata.30812

About 2000 neutral induced interactions observed inside the hydrogen filled TST in BEBC have been analysed. The data were obtained from an exposure to the v μ wide band beam at the CERN SPS. A separation of these events into charged current, neutral current and neutral hadron induced interactions have been achieved using a multidimensional kinematic analysis. The neutral to charged current cross section ratio for v μ interactions on free protons has been determined avoiding the drastic cuts on the data inherent in previous experiments. The result R P v = 0.47 ± 0.04 is compatible with those measurements and the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.18 ± 0.04.

1 data table

No description provided.


Measurement of the Neutral Current to Charged Current Ratio for Anti-neutrinos Proton Inclusive Scattering

Carmony, D.D. ; Carman, T.S. ; Barnes, V.E. ; et al.
Phys.Rev.D 26 (1982) 2965, 1982.
Inspire Record 11799 DOI 10.17182/hepdata.23944

The Fermilab wide-band antineutrino beam incident on the hydrogen-filled 15-foot bubble chamber was used to study ν¯p neutral-current interactions. The u=x(1−y) distribution is presented for both the neutral- and the charged-current data sample. Fitting the neutral-current u distribution to the prediction of a simple quark-parton model measures the Weinberg angle. By using recent measurements of the neutral-to-charged-current cross-section ratio for νp interactions (Rp), we find the corresponding ratio for ν¯p interactions (R¯p) to be 0.36±0.06.

3 data tables

No description provided.

No description provided.

No description provided.


Measurement of the Neutral Current Coupling Constants in Neutrino and Anti-neutrinos Interactions With Deuterium

The Amsterdam-Bergen-Bologna-Padua-Pisa-Saclay-Turin collaboration Allasia, D. ; Angelini, C. ; Baldini, A. ; et al.
Phys.Lett.B 133 (1983) 129, 1983.
Inspire Record 191539 DOI 10.17182/hepdata.30635

We have measured neutral and charged current interactions of ν μ and ν μ on proton and neutron. From a combination of ratios we determine the neutral current chiral coupling constants. The results are u 2 L = 0.13 ± 0.03, d 2 L = 0.19 ± 0.03, u 2 R = 0.02 ± 0.02 and d 2 R = 0.00 ± 0.02. These results agree with the predictions of the standard SU(2) × U(1) model. The corresponding value of sin 2 θ W is 0.20 ± 0.04.

6 data tables

No description provided.

No description provided.

No description provided.

More…

The Nonsinglet Valence Quark Distribution From Neutrino - Deuterium Deep Inelastic Scattering

Cole, J.B. ; Kunori, S. ; Snow, G.A. ; et al.
Phys.Rev.D 37 (1988) 1105, 1988.
Inspire Record 22672 DOI 10.17182/hepdata.23321

The deep-inelastic scattering reaction νμN→μ−X has been studied using the deuterium-filled 15-foot bubble chamber at Fermilab. The data have been analyzed under the assumption of isospin invariance to extract x(uV-dV) for the proton, where xuV(x) and xdV(x) are the valence up- and down-quark momentum distributions, respectively. The results are compared with other data and with different theoretical fits. The ratio νn/νp as a function of x is also presented.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of $\nu$ and $\bar{\nu}$ structure functions in hydrogen and iron

Abramowicz, H. ; Hansl-Kozanecka, T. ; May, J. ; et al.
Z.Phys.C 25 (1984) 29-43, 1984.
Inspire Record 201386 DOI 10.17182/hepdata.49653

The CDHS neutrino detector has been used to measure events originating in a tank of liquid hydrogen and in the iron of the detector. Total cross-sections, differential cross-sections, and structure functions are given for hydrogen and compared with those in iron. The measurements are in agreement with the expectations of the quark parton model. No significant differences indicative of nuclear binding effects in corresponding structure functions of protons and iron are observed. This may be of special interest in the case of the sea structure functions, since large differences are expected in some models.

5 data tables

No description provided.

No description provided.

No description provided.

More…