Search for heavy resonances decaying to a photon and a hadronically decaying $Z/W/H$ boson in $pp$ collisions at $\sqrt{s}=13$ $\mathrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 032015, 2018.
Inspire Record 1672010 DOI 10.17182/hepdata.82605

Many extensions of the Standard Model predict new resonances decaying to a $Z$, $W$, or Higgs boson and a photon. This paper presents a search for such resonances produced in $pp$ collisions at $\sqrt{s} = 13$ $\mathrm{TeV}$ using a dataset with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at the Large Hadron Collider. The $Z/W/H$ bosons are identified through their decays to hadrons. The data are found to be consistent with the Standard Model expectation in the entire investigated mass range. Upper limits are set on the production cross section times branching fraction for resonance decays to $Z/W+\gamma$ in the mass range from 1.0 to 6.8 $\mathrm{TeV}$, and for the first time into $H+\gamma$ in the mass range from 1.0 to 3.0 $\mathrm{TeV}$.

18 data tables match query

Efficiencies for gg->X(J=0)->Zgamma signal events to pass the category selections as a function of the resonance mass.

Efficiencies for qqbar->X(J=2)->Zgamma signal events to pass the category selections as a function of the resonance mass.

Efficiencies for gg->X(J=2)->Zgamma signal events to pass the category selections as a function of the resonance mass.

More…

Search for high-mass $W\gamma$ and $Z\gamma$ resonances using hadronic W/Z boson decays from 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 07 (2023) 125, 2023.
Inspire Record 2653725 DOI 10.17182/hepdata.136027

A search for high-mass charged and neutral bosons decaying to $W\gamma$ and $Z\gamma$ final states is presented in this paper. The analysis uses a data sample of $\sqrt{s} = 13$ TeV proton-proton collisions with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during LHC Run 2 operation. The sensitivity of the search is determined using models of the production and decay of spin-1 charged bosons and spin-0/2 neutral bosons. The range of resonance masses explored extends from 1.0 TeV to 6.8 TeV. At these high resonance masses, it is beneficial to target the hadronic decays of the $W$ and $Z$ bosons because of their large branching fractions. The decay products of the high-momentum $W/Z$ bosons are strongly collimated and boosted-boson tagging techniques are employed to improve the sensitivity. No evidence of a signal above the Standard Model backgrounds is observed, and upper limits on the production cross-sections of these bosons times their branching fractions to $W\gamma$ and $Z\gamma$ are derived for various boson production models.

24 data tables match query

The jet mass distribution of large-$R$ jets originating from the hadronic decay of $W$ and $Z$ bosons produced from the decay of BSM bosons with mass $m_X = 1000$ GeV. The decays simulated are for the production models $q\bar{q}' \to X^{\pm} \to W^{\pm}\gamma$ with a spin-1 resonance $X^{\pm}$ and $gg\to X^0 \to Z\gamma$ with a spin-0 resonance $X^{0}$.

The jet mass distribution of large-$R$ jets originating from the hadronic decay of $W$ and $Z$ bosons produced from the decay of BSM bosons with mass $m_X = 4000$ GeV. The decays simulated are for the production models $q\bar{q'}\to X^{\pm} \to W^{\pm}\gamma$ with a spin-1 resonance $X^{\pm}$ and $gg\to X^0 \to Z\gamma$ with a spin-0 resonance $X^{0}$.

Total efficiencies for the selection of signal events after categorization and application of the tighter photon $E_{\mathrm{T}}^{\gamma}$ selection used to optimize the signal significance spin-0 $gg\to X^0 \to Z\gamma$. In addition to the total efficiency, contributions to the signal selection from each of the separate event categories are shown. The efficiencies calculated from MC samples with $W/Z$ hadronic decays are shown as the points on each curve. The line presents interpolated results.

More…