Exploration of jet substructure using iterative declustering in pp and Pb-Pb collisions at LHC energies

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Lett.B 802 (2020) 135227, 2020.
Inspire Record 1733684 DOI 10.17182/hepdata.104932

The ALICE collaboration at the CERN LHC reports novel measurements of jet substructure in pp collisions at $\sqrt{s}$= 7 TeV and central Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. Jet substructure of track-based jets is explored via iterative declustering and grooming techniques. We present the measurement of the momentum sharing of two-prong substructure exposed via grooming, the $z_{\rm{g}}$, and its dependence on the opening angle, in both pp and Pb-Pb collisions. We also present the first measurement of the distribution of the number of branches obtained in the iterative declustering of the jet, which is interpreted as the number of its hard splittings. In Pb-Pb collisions, we observe a suppression of symmetric splittings at large opening angles and an enhancement of splittings at small opening angles relative to pp collisions, with no significant modification of the number of splittings. The results are compared to predictions from various Monte Carlo event generators to test the role of important concepts in the evolution of the jet in the medium such as color coherence.

18 data tables

Fully corrected $z_{\rm g}$ distribution in pp collisions for $40 \leq p_{\rm T,jet}^{\rm ch} < 60$ GeV/{\it c} and for $R=0.4$.

Ratio of fully corrected $z_{\rm g}$ distribution in pp collisions for $40 \leq p_{\rm T,jet}^{\rm ch} < 60$ GeV/{\it c} and predictions from PYTHIA 6 Perugia 11 simulations.All for $R=0.4$.

Ratio of fully corrected $z_{\rm g}$ distribution in pp collisions for $40 \leq p_{\rm T,jet}^{\rm ch} < 60$ GeV/{\it c} and predictions from PYTHIA 6 Perugia+POWHEG simulations. All for $R=0.4$.

More…

Medium modification of the shape of small-radius jets in central Pb-Pb collisions at $\sqrt{s_{\mathrm {NN}}} = 2.76\,\rm{TeV}$

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 10 (2018) 139, 2018.
Inspire Record 1682990 DOI 10.17182/hepdata.85738

We present the measurement of a new set of jet shape observables for track-based jets in central Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV. The set of jet shapes includes the first radial moment or angularity, $g$; the momentum dispersion, $p_{\rm T}D$; and the difference between the leading and sub-leading constituent track transverse momentum, $LeSub$. These observables provide complementary information on the jet fragmentation and can constrain different aspects of the theoretical description of jet-medium interactions. The jet shapes were measured for a small resolution parameter $R = 0.2$ and were fully corrected to particle level. The observed jet shape modifications indicate that in-medium fragmentation is harder and more collimated than vacuum fragmentation as obtained by PYTHIA calculations, which were validated with the measurements of the jet shapes in proton-proton collisions at $\sqrt{s} = 7$ TeV. The comparison of the measured distributions to templates for quark and gluon-initiated jets indicates that in-medium fragmentation resembles that of quark jets in vacuum. We further argue that the observed modifications are not consistent with a totally coherent energy loss picture where the jet loses energy as a single colour charge, suggesting that the medium resolves the jet structure at the angular scales probed by our measurements ($R=0.2$). Furthermore, we observe that small-$R$ jets can help to isolate purely energy loss effects from other effects that contribute to the modifications of the jet shower in medium such as the correlated background or medium response.

18 data tables

Fully corrected $g$ distributions in pp collisions at $\sqrt{s} = 7$\,TeV for $R = 0.2$ in the range of jet $p_{\mathrm{T,jet}}^{\rm ch}$ of $40$--$60$\,GeV$/c$. The results are compared to PYTHIA.

Ratio of fully corrected $g$ distributions pp collisions at $\sqrt{s} = 7$\,TeV for $R = 0.2$ in the range of jet $p_{\mathrm{T,jet}}^{\rm ch}$ of $40$--$60$\,GeV$/c$ and PYTHIA 8 Tune 4C simulations. The systematic uncertainty of $g$ is propagated to the ratio.

Ratio of fully corrected $g$ distributions pp collisions at $\sqrt{s} = 7$\,TeV for $R = 0.2$ in the range of jet $p_{\mathrm{T,jet}}^{\rm ch}$ of $40$--$60$\,GeV$/c$ and PYTHIA Perugia 11 simulations. The systematic uncertainty of $g$ is propagated to the ratio.

More…