$J/\psi$ and $\psi(2S)$ production at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 101 (2020) 052006, 2020.
Inspire Record 1773662 DOI 10.17182/hepdata.140524

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~\mbox{GeV/$c$}) =$ 54.3 $\pm$ 0.5 (stat) $\pm$ 5.5 (syst) nb.

3 data tables

The total cross section times the branching ratio.

The inclusive $J/\psi$ differential cross section as a function of $p_T$ at 1.2 < $|y|$ < 2.2 at 510 GeV.

The inclusive $J/\psi$ differential cross section integrated over 0 < $p_T$ < 10 GeV/$c$ as a function of rapidity at 510 GeV.


$J/\psi$ polarization in p+p collisions at $\sqrt{s}$ = 200 GeV in STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 739 (2014) 180-188, 2014.
Inspire Record 1263695 DOI 10.17182/hepdata.96232

We report on a polarization measurement of inclusive $J/\psi$ mesons in the di-electron decay channel at mid-rapidity at 2 $<p_{T}<$ 6 GeV/$c$ in $p+p$ collisions at $\sqrt{s}$ = 200 GeV. Data were taken with the STAR detector at RHIC. The $J/\psi$ polarization measurement should help to distinguish between different models of the $J/\psi$ production mechanism since they predict different $p_{T}$ dependences of the $J/\psi$ polarization. In this analysis, $J/\psi$ polarization is studied in the helicity frame. The polarization parameter $\lambda_{\theta}$ measured at RHIC becomes smaller towards high $p_{T}$, indicating more longitudinal $J/\psi$ polarization as $p_{T}$ increases. The result is compared with predictions of presently available models.

13 data tables

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $2 < p_{T}^{J/\psi} < 3$ GeV/c

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $3 < p_{T}^{J/\psi} < 4$ GeV/c

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $4 < p_{T}^{J/\psi} < 6$ GeV/c

More…

$J/\psi$ production at low $p_T$ in Au+Au and Cu+Cu collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV at STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 90 (2014) 024906, 2014.
Inspire Record 1258446 DOI 10.17182/hepdata.99158

The $\jpsi$ $\pt$ spectrum and nuclear modification factor ($\raa$) are reported for $\pt < 5 \ \gevc$ and $|y|<1$ from 0\% to 60\% central Au+Au and Cu+Cu collisions at $\snn = 200 \ \gev$ at STAR. A significant suppression of $\pt$-integrated $\jpsi$ production is observed in central Au+Au events. The Cu+Cu data are consistent with no suppression, although the precision is limited by the available statistics. $\raa$ in Au+Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with $\pt$. The data are compared to high-$\pt$ STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low $\pt$ are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.

11 data tables

The invariant yield versus transverse momentum for |y| < 1 in 0-20% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).

The invariant yield versus transverse momentum for |y| < 1 in 20-40% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).

The invariant yield versus transverse momentum for |y| < 1 in 40-60% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).

More…

$K^+\Lambda$ and $K^+\Sigma^0$ photoproduction with fine center-of-mass energy resolution

The Crystal Ball at MAMI collaboration Jude, T.C. ; Glazier, D.I. ; Watts, D.P. ; et al.
Phys.Lett.B 735 (2014) 112-118, 2014.
Inspire Record 1250810 DOI 10.17182/hepdata.130796

Measurements of $\gamma p \rightarrow K^{+} \Lambda$ and $\gamma p \rightarrow K^{+} \Sigma^0$ cross-sections have been obtained with the photon tagging facility and the Crystal Ball calorimeter at MAMI-C. The measurement uses a novel $K^+$ meson identification technique in which the weak decay products are characterized using the energy and timing characteristics of the energy deposit in the calorimeter, a method that has the potential to be applied at many other facilities. The fine center-of-mass energy ($W$) resolution and statistical accuracy of the new data results in a significant impact on partial wave analyses aiming to better establish the excitation spectrum of the nucleon. The new analyses disfavor a strong role for quark-diquark dynamics in the nucleon.

26 data tables

Excitation function at cos(Theta_K+)cm = -0.8

Excitation function at cos(Theta_K+)cm = -0.7

Excitation function at cos(Theta_K+)cm = -0.6

More…

$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

71 data tables

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 0-20%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 20-40%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 40-60%).

More…

$K^{*}(892)^0$ meson production in inelastic p+p interactions at 158 GeV/$c$ beam momentum measured by NA61/SHINE at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 460, 2020.
Inspire Record 1775731 DOI 10.17182/hepdata.94255

The measurement of $K^{*}(892)^0$ resonance production via its $K^{+}\pi^{-}$ decay mode in inelastic p+p collisions at beam momentum 158 GeV/$c$ ($\sqrt{s_{NN}}=17.3$ GeV) is presented. The data were recorded by the NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The $\textit{template}$ method was used to extract the $K^{*}(892)^0$ signal and double differential transverse momentum and rapidity spectra were obtained. The full phase-space mean multiplicity of $K^{*}(892)^0$ mesons was found to be $(78.44 \pm 0.38 \mathrm{(stat)} \pm 6.0 \mathrm{(sys)) \cdot 10^{-3}}$. The NA61/SHINE results are compared with the E$_{POS}$1.99 and Hadron Resonance Gas models as well as with world data from p+p and nucleus-nucleus collisions.

11 data tables

Numerical values of mass and width of $K^{∗}(892)^0$ mesons fitted in 0<y<0.5 and presented in Fig.8. The first uncertainty is statistical, while the second one is systematic.

Numerical values of double-differential yields $d^{2}n/dydp_{T}$ presented in Fig. 10, given in units of $10^{−3} (GeV/c)^{−1}$. The first uncertainty is statistical, while the second one is systematic

Numerical values of double-differential yields $d^{2}n/dydp_{T}$ presented in Fig. 10, given in units of $10^{−3} (GeV/c)^{−1}$. The first uncertainty is statistical, while the second one is systematic

More…

$R$ value measurements for $e^+e^-$ annihilation at 2.60, 3.07 and 3.65 GeV

The BES collaboration Ablikim, M. ; Bai, J.Z. ; Bai, Y. ; et al.
Phys.Lett.B 677 (2009) 239-245, 2009.
Inspire Record 814778 DOI 10.17182/hepdata.51953

Using a data sample with a total integrated luminosity of 10.0 pb$^{-1}$ collected at center-of-mass energies of 2.6, 3.07 and 3.65 GeV with BESII, cross sections for $e^+e^-$ annihilation into hadronic final states ($R$ values) are measured with statistical errors that are smaller than 1%, and systematic errors that are about 3.5%. The running strong interaction coupling constants $\alpha_s^{(3)}(s)$ and $\alpha_s^{(5)}(M_Z^2)$ are determined from the $R$ values.

1 data table

R values.


$\Sigma(1385)^{\pm}$ resonance production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 351, 2023.
Inspire Record 2088201 DOI 10.17182/hepdata.134042

Hadronic resonances are used to probe the hadron gas produced in the late stage of heavy-ion collisions since they decay on the same timescale, of the order of 1 to 10 fm/$c$, as the decoupling time of the system. In the hadron gas, (pseudo)elastic scatterings among the products of resonances that decayed before the kinetic freeze-out and regeneration processes counteract each other, the net effect depending on the resonance lifetime, the duration of the hadronic phase, and the hadronic cross sections at play. In this context, the $\Sigma(1385)^{\pm}$ particle is of particular interest as models predict that regeneration dominates over rescattering despite its relatively short lifetime of about 5.5 fm/$c$. The first measurement of the $\Sigma(1385)^{\pm}$ resonance production at midrapidity in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}= 5.02$ TeV with the ALICE detector is presented in this Letter. The resonances are reconstructed via their hadronic decay channel, $\Lambda\pi$, as a function of the transverse momentum ($p_{\rm T}$) and the collision centrality. The results are discussed in comparison with the measured yield of pions and with expectations from the statistical hadronization model as well as commonly employed event generators, including PYTHIA8/Angantyr and EPOS3 coupled to the UrQMD hadronic cascade afterburner. None of the models can describe the data. For $\Sigma(1385)^{\pm}$, a similar behaviour as ${\rm K}^{*} (892)^{0}$ is observed in data unlike the predictions of EPOS3 with afterburner.

11 data tables

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (0-10% multiplicity class).

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (30-50% multiplicity class).

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (50-90% multiplicity class).

More…

$\gamma$ and $\pi^0$ Production in $\bar{p} p$ Interactions at 22.4-{GeV}/$c$

The Dubna-Alma Ata-Helsinki-Moscow-Prague-Tbilisi collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Gramenitsky, I.M. ; et al.
Sov.J.Nucl.Phys. 32 (1980) 684, 1980.
Inspire Record 154051 DOI 10.17182/hepdata.18075

None

17 data tables

No description provided.

No description provided.

No description provided.

More…

$\phi$ meson production in $d+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 92 (2015) 044909, 2015.
Inspire Record 1379995 DOI 10.17182/hepdata.142332

The PHENIX experiment has measured $\phi$ meson production in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV using the dimuon and dielectron decay channels. The $\phi$ meson is measured in the forward (backward) $d$-going (Au-going) direction, $1.2<y<2.2$ ($-2.2<y<-1.2$) in the transverse-momentum ($p_T$) range from 1--7 GeV/$c$, and at midrapidity $|y|<0.35$ in the $p_T$ range below 7 GeV/$c$. The $\phi$ meson invariant yields and nuclear-modification factors as a function of $p_T$, rapidity, and centrality are reported. An enhancement of $\phi$ meson production is observed in the Au-going direction, while suppression is seen in the $d$-going direction, and no modification is observed at midrapidity relative to the yield in $p$$+$$p$ collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.

8 data tables

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

More…