$D \bar{D}$ Correlations in 360-{GeV}/$c \pi^- p$ Interactions

The NA27 & LEBC-EHS collaborations Aguilar-Benitez, M. ; Allison, W.W. ; Baland, J.F. ; et al.
Phys.Lett.B 164 (1985) 404-409, 1985.
Inspire Record 216598 DOI 10.17182/hepdata.49642

Charm-charm correlation properties are studied in detail for the first time using a sample of D D pairs produced in 360 GeV/ c π − p interactions. The data are compared with various models of charm production.

1 data table

No description provided.


$D$ Meson Production From 400 GeV/$c p p$ Interactions

The LEBC-EHS collaboration Aguilar-Benitez, M. ; Allison, W.W.M. ; Bailly, J.L. ; et al.
Phys.Lett.B 189 (1987) 476, 1987.
Inspire Record 245101 DOI 10.17182/hepdata.12913

We have measured the inclusive production properties of D and D messons produced from pp interactions at s =27.4 GeV . The differential production cross section is well represented by the empirical form d 2 σ d x F d P 2 T = 1 2 [σ ( D / D )(n+1)b](1−|x F |) n exp (−bp 2 T ) with n=4.9 ± 0.5, b=(1.0±0.1)( GeV /c) −2 , and the inclusive D / D cross section σ ( D / D ) is (30.2±3.3) ωb. The QCD fusion model predicts D / D production which is in good agreement with our data except for the magnitude of the cross section which depends sensitively on the assumed mass of the charm quark.

11 data tables

No description provided.

No description provided.

No description provided.

More…

$D$ Meson Production From 400-{GeV}/$c p p$ Interactions. Evidence for Leading Diquarks?

The LEBC-EHS collaboration Aguilar-Benitez, M. ; Allison, W.W.M. ; Bailly, J.L. ; et al.
Phys.Lett.B 201 (1988) 176, 1988.
Inspire Record 252001 DOI 10.17182/hepdata.49611

Results of fitting the differential distributions in x F and p T 2 of D mesons produced in 400 GeV/ c p-p interactions to the form d 2 σ d x F d p T 2 ∝(1−x F ) n exp [−(p T 2 /〈p T 2 〉)] are discussed. The D + distribution is found to be relatively hard [ n =3.1±0.8〈 P t 2 〉=1.32±0.27 (GeV/ c ) 2 ] and the D̄ 0 distribution relatively soft [ n =8.1±1.9,〈 p T 2 〉=0.62±0.14 (GeV/ c ) 2 ] compared to the average for all D's [ n =4.9±0.5,〈 p T 2 〉=0.99±0.10 (GeV/ c ) 2 ]. It is suggested that these distributions could reflect contribution of leading di-quarks in pp collisions. Comparison is made with evidence for leading quarks in charm production in 360 GeV/ cπ − p interactions.

1 data table

The invariant (C=INV) and non-invariant (C=NON-INV) distributions are fitted to (1-XL)**POWER. Pt distribution is fitted to EXP(-PT**2/SLOPE).


$J/\psi$ and $\psi(2S)$ production at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 101 (2020) 052006, 2020.
Inspire Record 1773662 DOI 10.17182/hepdata.140524

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~\mbox{GeV/$c$}) =$ 54.3 $\pm$ 0.5 (stat) $\pm$ 5.5 (syst) nb.

3 data tables

The total cross section times the branching ratio.

The inclusive $J/\psi$ differential cross section as a function of $p_T$ at 1.2 < $|y|$ < 2.2 at 510 GeV.

The inclusive $J/\psi$ differential cross section integrated over 0 < $p_T$ < 10 GeV/$c$ as a function of rapidity at 510 GeV.


$J/\psi$ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 109 (2012) 072301, 2012.
Inspire Record 1088222 DOI 10.17182/hepdata.60297

The ALICE experiment has measured the inclusive J/$\psi$ production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}} } = 2.76$ TeV down to zero transverse momentum in the rapidity range $2.5 < y < 4$. A suppression of the inclusive J/$\psi$ yield in Pb-Pb is observed with respect to the one measured in pp collisions scaled by the number of binary nucleon-nucleon collisions. The nuclear modification factor, integrated over the 0-80% most central collisions, is $0.545 \pm 0.032 \rm{(stat.)} \pm 0.083 \rm{(syst.)}$ and does not exhibit a significant dependence on the collision centrality. These features appear significantly different from measurements at lower collision energies. Models including J/$\psi$ production from charm quarks in a deconfined partonic phase can describe our data.

2 data tables

Jpsi Nuclear Modification Factor (Raa) measured in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV in 2.5 < y < 4 and pt > 0 GeV/c, as a function of - the average number of participating nucleons (<Npart>), - the average number of participating nucleons (<Npart,w>) weigthed by the average number of binary collisions, - the mid-rapidity charged-particle density measured at pseudo-rapidity eta = 0 dNch,w/deta|eta=0 weigthed by the average number of binary collisions.

Centrality integrated (0%-80%) inclusive Jpsi Nuclear Modification Factor (Raa) measured in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV as a function of rapidity for two transverse momentum ranges.


$K^{*}(892)^0$ meson production in inelastic p+p interactions at 158 GeV/$c$ beam momentum measured by NA61/SHINE at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 460, 2020.
Inspire Record 1775731 DOI 10.17182/hepdata.94255

The measurement of $K^{*}(892)^0$ resonance production via its $K^{+}\pi^{-}$ decay mode in inelastic p+p collisions at beam momentum 158 GeV/$c$ ($\sqrt{s_{NN}}=17.3$ GeV) is presented. The data were recorded by the NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The $\textit{template}$ method was used to extract the $K^{*}(892)^0$ signal and double differential transverse momentum and rapidity spectra were obtained. The full phase-space mean multiplicity of $K^{*}(892)^0$ mesons was found to be $(78.44 \pm 0.38 \mathrm{(stat)} \pm 6.0 \mathrm{(sys)) \cdot 10^{-3}}$. The NA61/SHINE results are compared with the E$_{POS}$1.99 and Hadron Resonance Gas models as well as with world data from p+p and nucleus-nucleus collisions.

11 data tables

Numerical values of mass and width of $K^{∗}(892)^0$ mesons fitted in 0<y<0.5 and presented in Fig.8. The first uncertainty is statistical, while the second one is systematic.

Numerical values of double-differential yields $d^{2}n/dydp_{T}$ presented in Fig. 10, given in units of $10^{−3} (GeV/c)^{−1}$. The first uncertainty is statistical, while the second one is systematic

Numerical values of double-differential yields $d^{2}n/dydp_{T}$ presented in Fig. 10, given in units of $10^{−3} (GeV/c)^{−1}$. The first uncertainty is statistical, while the second one is systematic

More…

$\Lambda(c$) Production Characteristics in Proton Proton Interactions at 400-{GeV}/$c$

The LEBC-EHS collaboration Aguilar-Benitez, M. ; Allison, W.W.M. ; Bailly, J.L. ; et al.
Phys.Lett.B 199 (1987) 462-468, 1987.
Inspire Record 248235 DOI 10.17182/hepdata.36567

We present the measurements of the Λ c production cross section in proton-proton interactions at s =27.4 GeV and give new limits on the exclusive branching ratio Λ c →pK + π − .

1 data table

No description provided.


$\Lambda\rm{K}$ femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 103 (2021) 055201, 2021.
Inspire Record 1797451 DOI 10.17182/hepdata.104979

The first measurements of the scattering parameters of $\Lambda$K pairs in all three charge combinations ($\Lambda$K$^{+}$, $\Lambda$K$^{-}$, and $\Lambda\mathrm{K^{0}_{S}}$) are presented. The results are achieved through a femtoscopic analysis of $\Lambda$K correlations in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV recorded by ALICE at the LHC. The femtoscopic correlations result from strong final-state interactions, and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parameters for the particle pairs. Extensive studies with the THERMINATOR 2 event generator provide a good description of the non-femtoscopic background, which results mainly from collective effects, with unprecedented precision. Furthermore, together with HIJING simulations, this model is used to account for contributions from residual correlations induced by feed-down from particle decays. The extracted scattering parameters indicate that the strong force is repulsive in the $\Lambda\rm{K}^{+}$ interaction and attractive in the $\Lambda\rm{K}^{-}$ interaction. The data hint that the and $\Lambda\rm{K}^{0}_{S}$ interaction is attractive, however the uncertainty of the result does not permit such a decisive conclusion. The results suggest an effect arising either from different quark-antiquark interactions between the pairs ($\rm s\overline{s}$ in $\Lambda$K$^{+}$ and $\rm u\overline{u}$ in $\Lambda$K$^{-}$) or from different net strangeness for each system (S = 0 for $\Lambda$K$^{+}$, and S = $-2$ for $\Lambda$K$^{-}$). Finally, the $\Lambda$K systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle $\Lambda$ and K source distributions.

71 data tables

Invariant mass distributions in the 0--10\% centrality interval of (a) p$\uppi^{-}$ pairs showing the $\Lambda$ peak for V$^{0}$ candidates.

Invariant mass distributions in the 0--10\% centrality interval of $\uppi^{+}\uppi^{-}$ pairs showing the $\mathrm{K^{0}_{S}}$ peak for V$^{0}$ candidates.

Measured correlation function for the $\Lambda\mathrm{K^{+}}\oplus\overline{\Lambda}\mathrm{K^{-}}$ system in the 0--10\% centrality interval.

More…

$\Lambda_\mathrm{c}^+$ production in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 793 (2019) 212-223, 2019.
Inspire Record 1696315 DOI 10.17182/hepdata.89397

A measurement of the production of prompt $\Lambda_{\rm c}^{+}$ baryons in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 $ TeV with the ALICE detector at the LHC is reported. The $\Lambda_{\rm c}^{+}$ and $\overline{\Lambda}_{\rm c}^{-}$ were reconstructed at midrapidity ($|y| < 0.5$) via the hadronic decay channel $\Lambda_{\rm c}^{+}\rightarrow {\rm p} {\rm K}_{\rm S}^{0}$ (and charge conjugate) in the transverse momentum and centrality intervals $6 < p_{\rm T} <12$ GeV/$c$ and 0-80%. The $\Lambda_{\rm c}^{+}$/D$^0$ ratio, which is sensitive to the charm quark hadronisation mechanisms in the medium, is measured and found to be larger than the ratio measured in minimum-bias pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 $ TeV. In particular, the values in p-Pb and Pb-Pb collisions differ by about two standard deviations of the combined statistical and systematic uncertainties in the common $p_{\rm T}$ interval covered by the measurements in the two collision system. The $\Lambda_{\rm c}^{+}$/D$^0$ ratio is also compared with model calculations including different implementations of charm quark hadronisation. The measured ratio is reproduced by models implementing a pure coalescence scenario, while adding a fragmentation contribution leads to an underestimation. The $\Lambda_{\rm c}^{+}$ nuclear modification factor, $R_{\rm AA}$, is also presented. The measured values of the $R_{\rm AA}$ of $\Lambda_{\rm c}^{+}$, D$_{\rm s}$ and non-strange D mesons are compatible within the combined statistical and systematic uncertainties. They show, however, a hint of a hierarchy $(R_{\rm AA}^{{\rm D}^{0}}<R_{\rm AA}^{{\rm D}_{\rm s}}<R_{\rm AA}^{\Lambda_{\rm c}^{+}})$, conceivable with a contribution of recombination mechanisms to charm hadron formation in the medium.

2 data tables

$\Lambda_{\rm {c}}^{+}$/${\rm D}^{0}$ ratio in 0-80% most central Pb-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the transverse momentum interval 6 < $p_{\rm {T}}$ < 12 GeV/${\it {c}}$

The nuclear modification factor $R_\mathrm{AA}$ of prompt $\Lambda_{\rm {c}}^{+}$ baryons in 0-80% most central Pb-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the transverse momentum interval 6 < $p_{\rm {T}}$ < 12 GeV/${\it {c}}$


$\Lambda_{\rm c}^+$ production in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 04 (2018) 108, 2018.
Inspire Record 1645239 DOI 10.17182/hepdata.81727

The $p_{\rm T}$-differential production cross section of prompt $\Lambda_{\rm c}^+$ charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity. The $\Lambda_{\rm c}^+$ and ${\overline{\Lambda}}_{\rm c}^-$ were reconstructed in the hadronic decay modes $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K^-}\pi^+$, $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K_{\rm S}^0}$ and in the semileptonic channel $\Lambda_{\rm c}^+\rightarrow {\rm e^+}\nu_{\rm e}\Lambda$ (and charge conjugates). The measured values of the $\Lambda_{\rm c}^+/{\rm D_0}$ ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and $p_{\rm T}$ intervals, where the $\Lambda_{\rm c}^+$ production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the $\Lambda_{\rm c}^+$ nuclear modification factor, $R_{\rm pPb}$, is also presented. The $R_{\rm pPb}$ is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium.

7 data tables

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$.

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $-0.96 \lt y \lt 0.04$.

The $\Lambda_{\rm {c}}^{+}$/${\rm D}^{0}$ ratio measured in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$ as a function of $p_{\rm {T}}$.

More…