Measurement of inclusive forward neutron production cross section in proton-proton collisions at $\mathrm{\sqrt{s} = 13~TeV}$ with the LHCf Arm2 detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
JHEP 11 (2018) 073, 2018.
Inspire Record 1692008 DOI 10.17182/hepdata.87099

In this paper, we report the measurement relative to the production of forward neutrons in proton-proton collisions at $\mathrm{\sqrt{s} = 13~TeV}$ obtained using the LHCf Arm2 detector at the Large Hadron Collider. The results for the inclusive differential production cross section are presented as a function of energy in three different pseudorapidity regions: $\eta > 10.76$, $8.99 < \eta < 9.22$ and $8.81 < \eta < 8.99$. The analysis was performed using a data set acquired in June 2015 that corresponds to an integrated luminosity of $\mathrm{0.194~nb^{-1}}$. The measurements were compared with the predictions of several hadronic interaction models used to simulate air showers generated by Ultra High Energy Cosmic Rays. None of these generators showed good agreement with the data for all pseudorapidity intervals. For $\eta > 10.76$, no model is able to reproduce the observed peak structure at around $\mathrm{5~TeV}$ and all models underestimate the total production cross section: among them, QGSJET II-04 shows the smallest deficit with respect to data for the whole energy range. For $8.99 < \eta < 9.22$ and $8.81 < \eta < 8.99$, the models having the best overall agreement with data are SIBYLL 2.3 and EPOS-LHC, respectively: in particular, in both regions SIBYLL 2.3 is able to reproduce the observed peak structure at around $\mathrm{1.5-2.5~TeV}$.

3 data tables

Inclusive neutron (and antineutron) production cross section in $\eta > 10.76$

Inclusive neutron (and antineutron) production cross section in $8.99 < \eta < 9.22$

Inclusive neutron (and antineutron) production cross section in $8.81 < \eta < 8.99$


Measurement of energy flow, cross section and average inelasticity of forward neutrons produced in $\mathrm{\sqrt{s} = 13 TeV}$ proton-proton collisions with the LHCf Arm2 detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
JHEP 07 (2020) 016, 2020.
Inspire Record 1783943 DOI 10.17182/hepdata.130268

In this paper, we report the measurement of the energy flow, the cross section and the average inelasticity of forward neutrons (+ antineutrons) produced in $\sqrt{s} = 13$ TeV proton-proton collisions. These quantities are obtained from the inclusive differential production cross section, measured using the LHCf Arm2 detector at the CERN Large Hadron Collider. The measurements are performed in six pseudorapidity regions: three of them ($\eta > 10.75$, $8.99 < \eta < 9.21$ and $8.80 < \eta < 8.99$), albeit with smaller acceptance and larger uncertainties, were already published in a previous work, whereas the remaining three ($10.06 < \eta < 10.75$, $9.65 < \eta < 10.06$ and $8.65 < \eta < 8.80$) are presented here for the first time. The analysis was carried out using a data set acquired in June 2015 with a corresponding integrated luminosity of $\mathrm{0.194~nb^{-1}}$. Comparing the experimental measurements with the expectations of several hadronic interaction models used to simulate cosmic ray air showers, none of these generators resulted to have a satisfactory agreement in all the phase space selected for the analysis. The inclusive differential production cross section for $\eta > 10.75$ is not reproduced by any model, whereas the results still indicate a significant but less serious deviation at lower pseudorapidities. Depending on the pseudorapidity region, the generators showing the best overall agreement with data are either SIBYLL 2.3 or EPOS-LHC. Furthermore, apart from the most forward region, the derived energy flow and cross section distributions are best reproduced by EPOS-LHC. Finally, even if none of the models describe the elasticity distribution in a satisfactory way, the extracted average inelasticity is consistent with the QGSJET II-04 value, while most of the other generators give values that lie just outside the experimental uncertainties.

9 data tables

Neutron (and antineutron) inclusive differential production cross section in $\eta > 10.75$

Neutron (and antineutron) inclusive differential production cross section in $10.06 < \eta < 10.75$

Neutron (and antineutron) inclusive differential production cross section in $9.65 < \eta < 10.06$

More…

Measurement of the forward $\eta$ meson production rate in p-p collisions at $\sqrt{s}$=13 TeV with the LHCf-Arm2 detector

Piparo, G. ; Adriani, O. ; Berti, E. ; et al.
JHEP 10 (2023) 169, 2023.
Inspire Record 2658888 DOI 10.17182/hepdata.146532

The forward $\eta$ mesons production has been observed by the Large Hadron Collider forward (LHCf) experiment in proton-proton collision at $\sqrt{s}$=13 TeV. This paper presents the measurement of the inclusive production rate of $\eta$ in $p_T<$ 1.1 GeV/c, expressed as a function of the Feynman-x variable. These results are compared with the predictions of several hadronic interaction models commonly used for the modelling of the air showers produced by ultra-high energy cosmic rays. This is both the first measurement of $\eta$ mesons from LHCf and the first time a particle containing strange quarks has been observed in the forward region for high-energy collisions. These results will provide a powerful constraint on hadronic interaction models for the purpose of improving the understanding of the processes underlying the air showers produced in the Earth's atmosphere by ultra-energetic cosmic rays.

1 data table

Inclusive eta production rate in $p_{T}<1.10\,GeV/c$


Analysis of the omega pi- System Produced in the Reaction pi- p --> pi- pi- pi+ pi0 p at 11.2-GeV/c

Gessaroli, R. ; Quareni-Vignudelli, A. ; Berti, S. ; et al.
Nucl.Phys.B 126 (1977) 382-396, 1977.
Inspire Record 119128 DOI 10.17182/hepdata.41905

The ωπ − mass spectrum, in the reaction π −p → ωπ − pat 11.2 GeV/ c , shows the production of the B − meson with a cross section of 27 ± 5 μb as well as a clear enhancement around 1670 MeV. In the differential cross section for B − production, there is a strong forward peak and a change of slope at t ' t 0.2 GeV 2 .

3 data tables

CORRECTED FOR BACKGROUND AND OMEGA TAILS.

No description provided.

ABS(D-WAVE/S-WAVE) = 0.4 +- 0.1 FOR B DECAY.


Transverse momentum distribution and nuclear modification factor of forward neutral pion in proton--lead collisions at $\sqrt{s_{NN}} = 5.02$TeV

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Rev.C 89 (2014) 065209, 2014.
Inspire Record 1287922 DOI 10.17182/hepdata.64158

The transverse momentum ($p_\text{T}$) distribution for inclusive neutral pions in the very forward rapidity region has been measured, with the Large Hadron Collider forward detector (LHCf), in proton--lead collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_{NN}} = 5.02$TeV at the LHC. The $p_\text{T}$ spectra obtained in the rapidity range $-11.0 < y_\text{lab} < -8.9$ and $0 < p_\text{T} < 0.6$GeV (in the detector reference frame) show a strong suppression of the production of neutral pions after taking into account ultra-peripheral collisions. This leads to a nuclear modification factor value, relative to the interpolated $p_\text{T}$ spectra in proton-proton collisions at $\sqrt{s} = 5.02$TeV, of about 0.1--0.4. This value is compared with the predictions of several hadronic interaction Monte Carlo simulations.

6 data tables

Production rate for PI0 production in the rapidity range -8.9 to -9.0.

Production rate for PI0 production in the rapidity range -9.0 to -9.2.

Production rate for PI0 production in the rapidity range -9.2 to -9.4.

More…

Measurement of very forward neutron energy spectra for 7 TeV proton--proton collisions at the Large Hadron Collider

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Lett.B 750 (2015) 360-366, 2015.
Inspire Record 1351909 DOI 10.17182/hepdata.73320

The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However no model perfectly explains the experimental results in the whole pseudo-rapidity range. The experimental data indicate the most abundant neutron production rate relative to the photon production, which does not agree with predictions of the models.

1 data table

Differential neutron production rate d$\sigma_{n}$/dE [mb/GeV] for each rapidity range.


Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Rev.D 94 (2016) 032007, 2016.
Inspire Record 1385877 DOI 10.17182/hepdata.74066

The differential cross sections for inclusive neutral pions as a function of transverse and longitudinal momentum in the very forward rapidity region have been measured at the Large Hadron Collider (LHC) with the Large Hadron Collider forward detector (LHCf) in proton-proton collisions at $\sqrt{s}=$ 2.76 and 7 TeV and in proton-lead collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_\text{NN}}=$ 5.02 TeV. Such differential cross sections in proton-proton collisions are compatible with the hypotheses of limiting fragmentation and Feynman scaling. Comparing proton-proton with proton-lead collisions, we find a sizable suppression of the production of neutral pions in the differential cross sections after subtraction of ultra-peripheral proton-lead collisions. This suppression corresponds to the nuclear modification factor value of about 0.1-0.3. The experimental measurements presented in this paper provide a benchmark for the hadronic interaction Monte Carlo simulation codes that are used for the simulation of cosmic ray air showers.

20 data tables

The average $\pi^{0}$ transverse momenta for the rapidity range $8.8<y<10.6$ in $p+p$ collisions at $\sqrt{s}=2.76$ and 7 TeV and for the rapidity range $-8.8>y_\rm{lab}>-10.6$ in $p+\rm{Pb}$ collisions at $\sqrt{s_\rm{NN}}=5.02$ TeV. The rapidity values for $p+\rm{Pb}$ collisions are in the detector reference frame and must be multiplied by -1.

Production rate for the $\pi^{0}$ production in the rapidity range $8.8 < y < 9.0$ in $p+p$ collisions and in the rapidity range $-8.8 > y_\rm{lab} > -9.0$ in $p+\rm{Pb}$ collisions.

Production rate for the $\pi^{0}$ production in the rapidity range $9.0 < y < 9.2$ in $p+p$ collisions and in the rapidity range $-9.0 > y_\rm{lab} > -9.2$ in $p+\rm{Pb}$ collisions.

More…

Measurement of forward photon production cross-section in proton–proton collisions at $\sqrt{s}$ = 13 TeV with the LHCf detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Lett.B 780 (2018) 233-239, 2018.
Inspire Record 1518782 DOI 10.17182/hepdata.86566

In this paper, we report the production cross-section of forward photons in the pseudorapidity regions of $\eta\,&gt;\,10.94$ and $8.99\,&gt;\,\eta\,&gt;\,8.81$, measured by the LHCf experiment with proton--proton collisions at $\sqrt{s}$ = 13 TeV. The results from the analysis of 0.191 $\mathrm{nb^{-1}}$ of data obtained in June 2015 are compared to the predictions of several hadronic interaction models that are used in air-shower simulations for ultra-high-energy cosmic rays. Although none of the models agree perfectly with the data, EPOS-LHC shows the best agreement with the experimental data among the models.

2 data tables

Inclusive photon production cross section in $\eta > 10.94$

Inclusive photon production cross section in $8.81<\eta<8.99$


Alpha breakup of Li-6 and Li-7 near the Coulomb barrier

Kelly, G. R. ; Davis, N. J. ; Ward, R. P. ; et al.
Phys.Rev.C 63 (2001) 024601, 2001.
Inspire Record 551836 DOI 10.17182/hepdata.25434

Angular distributions of the α-particle production differential cross section from the breakup of 6Li and 7Li projectiles incident on a 208Pb target have been measured at seven projectile energies between 29 and 52 MeV. The α-breakup cross section of 6Li was found to be systematically greater than that of 7Li across the entire energy range. These data have been compared with previously reported results and with the predictions of continuum-discretized coupled channels (CDCC) calculations including resonant and nonresonant projectile breakup. The present data compare well with previous measurements, while the CDCC calculations provide a reasonable prediction of the relative α-breakup cross sections but underpredict their absolute values. The calculations confirm that a major factor in the enhancement of the 6Li to 7Li α-breakup cross section is the difference between the α-breakup thresholds of the two isotopes. These results have implications for structural studies of light exotic nuclei based on elastic scattering.

2 data tables

No description provided.

No description provided.


Measurement of the branching ratio for the process b --> tau- anti-nu/tau X.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Åkesson, P.F. ; et al.
Phys.Lett.B 520 (2001) 1-10, 2001.
Inspire Record 561580 DOI 10.17182/hepdata.49743

The inclusive branching ratio for the process b -> tau nu X has been measured using hadronic Z decays collected by the OPAL experiment at LEP in the years 1992-2000. The result is: BR(b -> tau nu X) = (2.78 +/- 0.18 +/- 0.51)% This measurement is consistent with the Standard Model expectation and puts a constraint of tan(beta) / M(H+/-) < 0.53 GeV-1 at the 95% confidence level on Type II Two Higgs Doublet Models.

1 data table

TAN(BETA) is the two-Higgs-doublet model parameter, while M_H is the mass of charged Higgs.