Measurement of Inclusive ep Cross Sections at High Q2 at sqrt(s) = 225 and 252 GeV and of the Longitudinal Proton Structure Function FL at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baghdasaryan, S. ; et al.
Eur.Phys.J.C 74 (2014) 2814, 2014.
Inspire Record 1269731 DOI 10.17182/hepdata.62536

Inclusive ep double differential cross sections for neutral current deep inelastic scattering are measured with the H1 detector at HERA. The data were taken with a lepton beam energy of 27.6 GeV and two proton beam energies of Ep = 460 and 575 GeV corresponding to centre-of-mass energies of 225 and 252 GeV, respectively. The measurements cover the region of 6.5 *10^{-4}<=x<= 0.65 for 35<=Q^2<=800 GeV^2 up to y = 0.85. The measurements are used together with previously published H1 data at Ep = 920 GeV and lower Q2 data at Ep = 460, 575 and 920 GeV to extract the longitudinal proton structure function FL in the region 1.5<=Q^2 <=800 GeV^2.

51 data tables

The neutral current reduced cross section at Q^2=35 GeV^2 for a proton energy of 460 GeV.

The neutral current reduced cross section at Q^2=45 GeV^2 for a proton energy of 460 GeV.

The neutral current reduced cross section at Q^2=60 GeV^2 for a proton energy of 460 GeV.

More…

Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised Lepton Beams at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
JHEP 09 (2012) 061, 2012.
Inspire Record 1120512 DOI 10.17182/hepdata.64899

Inclusive e\pmp single and double differential cross sections for neutral and charged current deep inelastic scattering processes are measured with the H1 detector at HERA. The data were taken at a centre-of-mass energy of \surds = 319GeV with a total integrated luminosity of 333.7 pb-1 shared between two lepton beam charges and two longitudinal lepton polarisation modes. The differential cross sections are measured in the range of negative fourmomentum transfer squared, Q2, between 60 and 50 000GeV2, and Bjorken x between 0.0008 and 0.65. The measurements are combined with earlier published unpolarised H1 data to improve statistical precision and used to determine the structure function xF_3^gammaZ. A measurement of the neutral current parity violating structure function F_2^gammaZ is presented for the first time. The polarisation dependence of the charged current total cross section is also measured. The new measurements are well described by a next-to-leading order QCD fit based on all published H1 inclusive cross section data which are used to extract the parton distribution functions of the proton.

61 data tables

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 120, 150, 200, 250 and 300 GeV^2.

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 400, 500, 650, 800 and 1000 GeV^2.

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 1200, 1500, 2000, 3000 and 5000 GeV^2.

More…

Combination of Measurements of Inclusive Deep Inelastic $e^{\pm}p$ Scattering Cross Sections and QCD Analysis of HERA Data

The H1 & ZEUS collaborations Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 75 (2015) 580, 2015.
Inspire Record 1377206 DOI 10.17182/hepdata.68951

A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current $e^{\pm}p$ scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb$^{-1}$ and span six orders of magnitude in negative four-momentum-transfer squared, $Q^2$, and Bjorken $x$. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in $\alpha_s(M_Z)=0.1183 \pm 0.0009 {\rm(exp)} \pm 0.0005{\rm (model/parameterisation)} \pm 0.0012{\rm (hadronisation)} ^{+0.0037}_{-0.0030}{\rm (scale)}$. An extraction of $xF_3^{\gamma Z}$ and results on electroweak unification and scaling violations are also presented.

9 data tables

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 318$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 300$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 251$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

More…

Measurement of the $Q~{2}$ dependence of the Charged and Neutral Current Cross Sections in $e~{\pm}p$ Scattering at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 379 (1996) 319-329, 1996.
Inspire Record 417155 DOI 10.17182/hepdata.44768

The $Q~{2}$ dependence and the total cross sections for charged and neutral current processes are measured in $e~{\pm}p$ reactions for transverse momenta of the outgoing lepton larger than 25 GeV. Comparable size of cross sections for the neutral current process and for the weak charged current process are observed above $Q~2\approx5000$GeV$~2$. Using the shape and magnitude of the charged current cross section we determine a propagator mass of $m_{W} = 84\ ~{+10}_{-7}$ GeV.

4 data tables

No description provided.

No description provided.

Total cross-section for E-P events.

More…

A Measurement and QCD Analysis of the Proton Structure Function $F_2(x,Q~2)$ at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 470 (1996) 3-40, 1996.
Inspire Record 416819 DOI 10.17182/hepdata.44781

A new measurement of the proton structure function $F_2(x,Q~2)$ is reported for momentum transfers squared $Q~2$ between 1.5GeV$~2$ and 5000GeV$~2$ and for Bjorken $x$ between $3\cdot 10~{-5}$ and $0.32$ using data collected by the HERA experiment H1 in 1994. The data represent an increase in statistics by a factor of ten with respect to the analysis of the 1993 data. Substantial extension of the kinematic range towards low $Q~2$ and $x$ has been achieved using dedicated data samples and events with initial state photon radiation. The structure function is found to increase significantly with decreasing $x$, even in the lowest accessible $Q~2$ region. The data are well described by a Next to Leading Order QCD fit and the gluon density is extracted.

26 data tables

Data from shifted vertex sample.

Data from shifted vertex sample.

Data from shifted vertex sample.

More…

Determination of the longitudinal proton structure function F(L)(x,Q**2) at low x.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 393 (1997) 452-464, 1997.
Inspire Record 426362 DOI 10.17182/hepdata.44694

A measurement of the inclusive cross section for the deep-inelastic scattering of positrons off protons at HERA is presented at momentum transfers $8.5 \leq Q~2 \leq 35 GeV~2$ and large inelasticity $y = 0.7$, i.e. for the Bjorken-x range $0.00013 \leq x \leq 0.00055$. Using a next-to-leading order QCD fit to the structure function F_2 at lower y values, the contribution of F_2 to the measured cross section at high y is calculated and, by subtraction, the longitudinal structure function F_{L} is determined for the first time with an average value of $F_L=0.52 \pm 0.03 (stat)$~ {+0.25}_{-0.22}$ (syst) at $Q~2=15.4 GeV~2$ and $x=0.000243$.

3 data tables

Inclusive cross section scaled by the kinematic factor K given by:. X*Q**4/((2*PI*ALPHA**2)*Y+). Y+=2(1-Y)+Y**2.

F2 values corresponding to the cross section measurements. X*Q**4/((2*PI*ALPHA**2)*Y+). Y+=2(1-Y)+Y**2.

Longitudinal structure function measurements.


Di-jet event rates in deep-inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 13 (2000) 415-426, 2000.
Inspire Record 472305 DOI 10.17182/hepdata.44322

Di-jet event rates have been measured for deep-inelastic scattering in the kinematic domain ~5 < Q^2 < ~100 GeV^2 and ~10^(-4) < x_Bj < ~10^(-2), and for jet transverse momenta squared p_t^2 > ~Q^2. The analysis is based on data collected with the H1 detector at HERA in 1994 corresponding to an integrated luminosity of about 2 pb^(-1). Jets are defined using a cone algorithm in the photon-proton centre of mass system requiring jet transverse momenta of at least 5 GeV. The di-jet event rates are shown as a function of Q^2 and x_Bj. Leading order models of point-like interacting photons fail to describe the data. Models which add resolved interacting photons or which implement the colour dipole model give a good description of the di-jet event rate. This is also the case for next-to-leading order calculations including contributions from direct and resolved photons.

4 data tables

Di-jet rates for 'Symmetric' and 'Asymmetric' scenarios for jet energy cuts.

Di-jet rates for 'Sum' scenario for jet energy cuts.

Di-jet rates for 'Symmetric' and 'Asymmetric' scenarios for jet energy cuts.

More…

A measurement of the proton structure function F2(x,Q**2) at low x and low Q**2 at HERA.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 497 (1997) 3-30, 1997.
Inspire Record 441392 DOI 10.17182/hepdata.44625

The results of a measurement of the proton structure function F_2(x,Q~2)and the virtual photon-proton cross section are reported for momentum transfers squared Q~2 between 0.35 GeV~2 and 3.5 GeV~2 and for Bjorken-x values down to 6 10~{-6} using data collected by the HERA experiment H1 in 1995. The data represent an increase in kinematic reach to lower x and Q~2 values of about a factor of 5 compared to previous H1 measurements. Including measurements from fixed target experiments the rise of F_2 with decreasing x is found to be less steep for the lowest Q~2 values measured. Phenomenological models at low Q~2 are compared with the data.

18 data tables

No description provided.

No description provided.

No description provided.

More…

Multi-jet event rates in deep inelastic scattering and determination of the strong coupling constant.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 6 (1999) 575-585, 1999.
Inspire Record 473521 DOI 10.17182/hepdata.44216

Jet event rates in deep inelastic ep scattering at HERA are investigated applying the modified JADE jet algorithm. The analysis uses data taken with the H1 detector in 1994 and 1995. The data are corrected for detector and hadronization effects and then compared with perturbative QCD predictions using next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2) is determined evaluating the jet event rates. Values of alpha_S(Q^2) are extracted in four different bins of the negative squared momentum transfer~$\qq$ in the range from 40 GeV2 to 4000 GeV2. A combined fit of the renormalization group equation to these several alpha_S(Q^2) values results in alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).

3 data tables

Measured (2+1) jet event rates using the modified JADE algorithm (C=MEAS), corrected to the hadron (C=HAD) and to the parton (C=PAR) level. The variable Z(p) is defined as the minimum (for i=1,2) of. (E_jet,i*(1-cos(theta_jet,i)/SUM(j=1,2)(E_jet,j*(1-cos(theta,j)).

ALPHAS at different Q2 values. The TOT error is the total error.

ALPHAS extrapolated to the Z0 mass. The second DSYS (systematic) error is from the jet finding alogrithm.


Differential (2+1) jet event rates and determination of alpha(s) in deep inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 5 (1998) 625-639, 1998.
Inspire Record 472304 DOI 10.17182/hepdata.44249

Events with a (2+1) jet topology in deep-inelastic scattering at HERA are studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet events has been determined with the modified JADE jet algorithm as a function of the jet resolution parameter and is compared with the predictions of Monte Carlo models. In addition, the event rate is corrected for both hadronization and detector effects and is compared with next-to-leading order QCD calculations. A value of the strong coupling constant of alpha_s(M_Z^2)= 0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is extracted. The systematic error includes uncertainties in the calorimeter energy calibration, in the description of the data by current Monte Carlo models, and in the knowledge of the parton densities. The theoretical error is dominated by the renormalization scale ambiguity.

4 data tables

Y2 distribution corrected for detector effects.

Y2 distribution corrected for both detector and hadronization effects.

Y2 distribution using the E, E0 and P variants of the JADE alogrithm, corrected for both detector and hadronization effects. Statistical errors only.

More…