$\{pi}-p$ interactions at 1.59 GeV/c

Alitti, J. ; Baton, J.P. ; Berthelot, A. ; et al.
Nuovo Cim. 29 (1963) 515, 1963.
Inspire Record 851185 DOI 10.17182/hepdata.980

Report on the investigation of interactions in π−p collisions at a pion momentum of 1.59 GeV/c, by means of the 50 cm Saclay liquid hydrogen bubble chamber, operating in a magnetic field of 17.5 kG. The results obtained concern essentially the elastic scattering and the inelastic scattering accompanied by the production of either a single pion in π−p→ pπ−π0 and nπ−π+ interactions, or by more than one pion in four-prong events. The observed angular distribution for the elastic scattering in the diffraction region, can be approximated by an exponential law. From the extrapolated value, thus obtained for the forward scattering, one gets σel= (9.65±0.30) mb. Effective mass spectra of π−π0 and π−π+ dipions are given in case of one-pion production. Each of them exhibits the corresponding ρ− or ρ0 resonances in the region of ∼ 29μ2 (μ = mass of the charged pion). The ρ peaks are particularly conspicuous for low momentum transfer (Δ2) events. The ρ0 distribution presents a secondary peak at ∼31μ2 due probably to the ω0 → π−π+ process. The branching ratio (ω0→ π+π−)/(ω0→ π+π− 0) is estimated to be ∼ 7%. The results are fairly well interpreted in the frame of the peripheral interaction according to the one-pion exchange (OPE) model, Up to values of Δ2/μ2∼10. In particular, the ratio ρ−/ρ0 is of the order of 0.5, as predicted by this model. Furthermore, the distribution of the Treiman-Yang angle is compatible with an isotropic one inside the ρ. peak. The distribution of\(\sigma _{\pi ^ + \pi ^ - } \), as calculated by the use of the Chew-Low formula assumed to be valid in the physical region of Δ2, gives a maximum which is appreciably lower than the value of\(12\pi \tilde \lambda ^2 = 120 mb\) expected for a resonant elastic ππ scattering in a J=1 state at the peak of the ρ. However, a correcting factor to the Chew-Low formula, introduced by Selleri, gives a fairly good agreement with the expected value. Another distribution, namely the Δ2 distribution, at least for Δ2 < 10 μ2, agrees quite well with the peripheral character of the interaction involving the ρ resonance. π− angular distributions in the rest frame of the ρ exhibit a different behaviour for the ρ− and for the ρ0. Whereas the first one is symmetrical, as was already reported in a previous paper, the latter shows a clear forward π− asymmetry. The main features of the four-prong results are: 1) the occurrence of the 3/2 3/2 (ρπ+) isobar in π−p → pπ+π−π− events and 2) the possible production of the ω0→ π+π−π0 resonance in π−p→ pπ−π+π−π0 events. No ρ’s were observed in four-prong events.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Polarization of Recoil Protons in pi + /- p Elastic Scattering Near 600 MeV

Eandi, Richard D. ; Devlin, Thomas J. ; Kenney, Robert W. ; et al.
Phys.Rev. 136 (1964) B536-B542, 1964.
Inspire Record 944968 DOI 10.17182/hepdata.529

Angular distributions of recoil-proton polarization in elastic π±p scattering were measured at 523-, 572-, and 689-MeV incident pion kinetic energy. Polarization measurements were made by observing the azimuthal asymmetry in the subsequent scattering of recoil protons in large carbon-plate spark chambers. Typical strong variation of the polarization with pion scattering angle near the πp diffraction minima was observed. Since existing opinion favors a D13 resonance at 600 MeV, a phase-shift analysis was attempted in order to confirm the existence and parity of this resonance. Available πp total and differential cross sections, these polarization data, and some possible restrictive assumptions related to the 600-MeV resonance were used in the analysis. Though the polarization results aided significantly in restricting the number of acceptable phase-shift sets, still, many plausible and qualitatively different sets were found.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Polarization of Recoil Protons in pi + /- p Elastic Scattering at 864, 981, and 1301 MeV

Eandi, Richard D. ; Devlin, Thomas J. ; Kenney, Robert W. ; et al.
Phys.Rev. 136 (1964) B1187-B1189, 1964.
Inspire Record 944970 DOI 10.17182/hepdata.535

Angular distributions of recoil-proton polarization in elastic π±p scattering were measured at 864-, 981-, and 1301-MeV incident pion kinetic energy. Polarization measurements were made by observing the azimuthal asymmetry in the subsequent scattering of recoil protons in large carbon-plate spark chambers. The spark chambers proved to be very suitable polarization analyzer detectors. Strong variation of the polarization with backward pion scattering angle was observed.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Polarization and Differential Cross Sections in Proton-Proton and Proton-Nucleus Scatterings at 725 MeV

McManigal, Paul G. ; Eandi, Richard D. ; Kaplan, Selig N. ; et al.
Phys.Rev. 137 (1965) B620-B629, 1965.
Inspire Record 49431 DOI 10.17182/hepdata.26687

The polarization and angular distribution of protons scattered from protons, helium, beryllium, carbon, aluminum, calcium, iron, and tantalum were measured as functions of angle at 725 MeV. A variation of the usual double-elastic-scattering method was used, in that the sense of the first scattering angle was reversed in finding asymmetries, rather than the second angle. Energy analysis of the scattered beam was accomplished by means of a 102-degree magnetic spectrometer allowing a total resolution of ±10 MeV. The data were fitted with an optical model. In the proton-nucleus scattering the polarization reaches a maximum value of about 40% at angles less than the diffraction minimum. Results in proton-proton scatterings are more interesting; however, because of an uncertainty in the analyzing power of carbon, a definite statement cannot be made. One can say, however, that either the polarization in proton-proton scatterings is above 50% at this energy or the analyzing power of carbon at 6 deg and 600 MeV is more than 40%, which is considerably greater than the 30% measured at 725 MeV.

7 data tables

No description provided.

No description provided.

No description provided.

More…

$\pi^+ p$ Elastic Scatterings at 2.35 and 2.90 BeV/c

Kramer, Paul R. ; Plano, Richard J. ;
PhD Thesis, Rutgers U., Piscataway, 1966.
Inspire Record 1407272 DOI 10.17182/hepdata.69629

None

3 data tables

No description provided.

No description provided.

No description provided.


STUDY OF p p INTERACTIONS AT 28.5-BeV/c IN TWO AND FOUR PRONG FINAL STATES

Connolly, P.L. ; Ellis, W.E. ; Hough, Paul V.C. ; et al.
C671122-2, 1967.
Inspire Record 1100201 DOI 10.17182/hepdata.50281

None

1 data table

'1'. '2'. '3'.


Proton-Proton Interactions at 5.5 GeV/c

Alexander, G. ; Benary, O. ; Czapek, G. ; et al.
Phys.Rev. 154 (1967) 1284-1304, 1967.
Inspire Record 52243 DOI 10.17182/hepdata.55119

This report is based on about 10 500 pp collision events produced in the 81-cm Saclay hydrogen bubble chamber at CERN. Cross-section values for the different identified final states and resonances are given. The isobars N*1238, N*1420, N*1518, N*1688, N*1920, and N*2360 were identified and their production cross-section values were found via a best-fit analysis of different invariant-mass histograms. About 70% of the isobars are connected with the quasi-two-body reactions pp→N*N and pp→N*N*. The reaction pp→nN*1238(pπ+) with a cross section of 3.25±0.16 mb was analyzed in terms of a peripheral absorption model, which was found to be in good agreement with the data. Various decay modes of the N*1518 and N*1688 isobars were observed and their branching ratios determined. The branching ratio of nπ+ to pπ+π− was found to be 0.77±0.45 for N*1518 and 0.67±0.40 for N*1688. The branching ratio of N*1238(pπ+)π− to pπ+π− of N*1688 was estimated to be 0.74±0.14. Pion production turned out to be mainly due to decay of isobars. Production of meson resonances turned out to be less important; the reaction pp→ppω0→ppπ+π−π0 was identified with a cross-section value of 0.11±0.02 mb. Finally, the production of neutral strange particles with a cross section of 0.45±0.04 mb is descussed. Strong formation of Y*1385 is observed.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic Differential Cross Sections for pi + /- + p Scattering from 2.3-6.0 BeVc

Coffin, C.T. ; Dikmen, N. ; Ettlinger, L. ; et al.
Phys.Rev. 159 (1967) 1169-1175, 1967.
Inspire Record 52242 DOI 10.17182/hepdata.26578

Elastic differential cross sections were measured at 6 energies between 2.3 and 6 BeVc for π++p and π−+p. The behavior of the secondary peak as a function of energy and charge is shown. Evidence for considerable resonance structure is seen in the angular distributions.

1 data table

No description provided.


Photoproduction of pi+ Mesons at 3.4 and 5.0 BeV

Joseph, P.M. ; Hicks, N. ; Litt, L. ; et al.
Phys.Rev.Lett. 19 (1967) 1206-1209, 1967.
Inspire Record 52485 DOI 10.17182/hepdata.21755

We report measurements of the photoproduction from hydrogen of single π+ mesons at gamma-ray energies of 3.4 and 5.0 BeV and at laboratory angles of 5.1°, 7.1°, 9.9°, and 15.1°. The s dependence at fixed t is derived for momentum transfers of -0.20, -0.37, and -0.70 BeV2. The pion data are compared with a Reggeized one-pion-exchange model.

1 data table

No description provided.


Neutron-Proton and Neutron-Deuteron Total Cross Sections from 14 to 27 GeV/c

Kriesler, Michael N. ; Jones, Lawrence W. ; Longo, Michael J. ; et al.
Phys.Rev.Lett. 20 (1968) 468-471, 1968.
Inspire Record 54461 DOI 10.17182/hepdata.21734

The first direct measurements of neutron-proton and neutron-deuteron total cross sections in the momentum range 14 to 27 GeV/c are presented. The np total cross section apparently becomes less than the pp total cross section in this momentum region. Our results show no evidence for a rapid vanishing of the Glauber screening correction as predicted by Abers et al. on the basis of Regge theory.

1 data table

'1'. '2'.