Elastic Scattering and Single Meson Production in Proton-Proton Collisions at 2.85 Bev

Smith, G.A. ; Courant, H. ; Fowler, E.C. ; et al.
Phys.Rev. 123 (1961) 2160-2167, 1961.
Inspire Record 47571 DOI 10.17182/hepdata.734

The Brookhaven National Laboratory twenty-inch liquid hydrogen bubble chamber was exposed to a monoenergetic beam of 2.85-Bev protons, elastically scattered from a carbon target in the internal beam of the Cosmotron. All two-prong events, excluding strange particle events, have been studied by the Yale High-Energy Group. The remaining interactions have been studied by the Brookhaven Bubble Chamber Group. Elastic scattering was found to be mostly pure diffraction scattering at center-of-mass angles up to about thirty-five degrees. Some phase shift and/or tapering of the proton edge was required to fit the data at larger angles. No polarization effects in the proton-carbon scattering were observed using hydrogen as an analyzer of polarized protons. Nucleonic isobar formation in the T=32, J=32 state was found to account for a large part of single pion production. High-orbital angular-momentum states were found to be greatly favored in single pion production. The isobar model of Lindenbaum and Sternheimer gave good agreement with the observed nucleon and pion energy spectra. No polarization or alignment effects were observed for the isobar assumed in this model.

3 data tables

No description provided.

No description provided.


n-p Elastic Charge Exchange in the BeV Energy Region

Palevsky, H. ; Moore, J.A. ; Stearns, R.L. ; et al.
Phys.Rev.Lett. 9 (1962) 509-511, 1962.
Inspire Record 46894 DOI 10.17182/hepdata.209

None

6 data tables

'1'. '2'.

No description provided.

No description provided.

More…

Elastic electron - proton scattering at momentum transfers up t 245-F**-2

Albrecht, W ; Behrend, H.J. ; Brasse, F.W. ; et al.
Phys.Rev.Lett. 17 (1966) 1192, 1966.
Inspire Record 48841 DOI 10.17182/hepdata.3392

None

17 data tables

No description provided.

No description provided.

No description provided.

More…

Small-Angle Electron-Proton Elastic Scattering Cross Sections for Momentum Transfers between 10 and 105 f $^{-2}$

Bartel, W. ; Dudelzak, B. ; Krehbiel, H. ; et al.
Phys.Rev.Lett. 17 (1966) 608-611, 1966.
Inspire Record 846566 DOI 10.17182/hepdata.21827

None

8 data tables

No description provided.

No description provided.

No description provided.

More…

Polarization Parameter in p-p Scattering from 1.7 to 6.1 BeV

Grannis, P. ; Arens, J. ; Betz, F. ; et al.
Phys.Rev. 148 (1966) 1297-1302, 1966.
Inspire Record 50914 DOI 10.17182/hepdata.26642

The polarization parameter in proton-proton scattering has been measured at incident proton kinetic energies of 1.7, 2.85, 3.5, 4.0, 5.05, and 6.15 BeV and for four-momentum transfer squared between 0.1 and 1.0 (BeV/c)2. The experiment was done with an unpolarized proton beam from the Bevatron striking a polarized proton target. Both final-state protons were detected in coincidence and the asymmetry in counting rate for target protons polarized parallel and antiparallel to the scattering normal was measured. The maximum polarization was observed to decrease from 0.4 at 1.7 BeV to 0.2 at 6.1 BeV. The maximum of the polarization at all energies studied occurs at a four-momentum transfer squared of 0.3 to 0.4 (BeV/c)2.

6 data tables
More…

Large-Angle Pion-Proton Elastic Scattering at High Energies

Orear, J. ; Rubinstein, R. ; Scarl, D.B. ; et al.
Phys.Rev. 152 (1966) 1162-1170, 1966.
Inspire Record 50774 DOI 10.17182/hepdata.407

Differential cross sections for elastic π±−p scattering have been measured at lab momenta of 8 and 12 GeV/c in a momentum-transfer region corresponding to 1.2≤−t≤6 (GeV/c)2. Also, differential cross sections near 180° were measured for 4 and 8 GeV/c pions. At momentum transfers greater than −t=2 (GeV/c)2, the π−p cross sections drop much faster with increasing angle than the corresponding p−p cross sections. Also, in the region −t≃1.3 (GeV/c)2, there is structure in the π−p angular distribution but not in the p−p angular distribution. At −t≃3 (GeV/c)2, the drop in cross section appears to stop and from then on the angular distribution is consistent with isotropy. But in the angular region 170° to 180°, the cross sections have become much larger, and sharp backward peaks are observed. Information is given on the energy and charge dependences and widths of these backward peaks.

22 data tables

'1'. '2'.

'1'. '2'.

No description provided.

More…

Some Recent Measurements of Proton Form Factors

Albrecht, W. ; Behrend, H.-J. ; Dorner, H. ; et al.
Phys.Rev.Lett. 18 (1967) 1014-1015, 1967.
Inspire Record 52298 DOI 10.17182/hepdata.21769

None

6 data tables

No description provided.

No description provided.

No description provided.

More…

Quasielastic Electron-Deuteron Scattering Between q$^2$=18f$^{-2}$ and 100f$^{-2}$

Albrecht, W. ; Behrend, H.J. ; Dorner, H. ; et al.
Phys.Lett.B 26 (1968) 642-644, 1968.
Inspire Record 53149 DOI 10.17182/hepdata.29312

Quasielastic e-d scattering measurements were performed up to q 2 = 100 fm −2 . Only the electron was detected. The ratio R= ( d 2 ω d Ω d E′) ed d ω d Ω) ep was measured at the quasielastic peak; the magnetic form factor G M N of the neutron was deduced using the assumption G E N = 0.

2 data tables

No description provided.

CONST(NAME=MU) is the magnetic moment. The magnetic formfarctor (GM) is evaluated ander assumption of GE=0.


Photoproduction of pi0 Mesons from Hydrogen at 180-degrees

Cassiday, G.L. ; Fischer, H. ; Ito, A. ; et al.
Phys.Rev.Lett. 21 (1968) 933-934, 1968.
Inspire Record 944912 DOI 10.17182/hepdata.21702

We measured the π0 photoproduction differential cross section at 180° for a range of incident photon energies between 650 and 1750 MeV. The cross sections are dominated by the D13(1525), D15(1688), and F37(1920) resonances.

1 data table

No description provided.


Proton proton triple scattering at 1.9 gev

Carithers, W.C. ; Adair, R.K. ; Hawkins, C.B.J. ; et al.
Phys.Rev. 179 (1969) 1304-1314, 1969.
Inspire Record 55504 DOI 10.17182/hepdata.5476

We have measured the Wolfenstein triple-scattering parameters R, D, and A′ at 1.9 GeV for p−p scattering at 90° in the c.m. system. We find that R=0.11±0.16, A′=−0.54±0.16, and D=0.91±0.21, where these parameters are defined in the c.m. system. The possibility of a vector character for the strong inter-actions is discussed. We conclude that neither a single vector-meson exchange nor a single pseudoscalar-meson exchange can account for the data. Spin effects are found to remain an important part of the nucleon-nucleon interaction at four-momentum transfer −t=1.8 (GeV/c)2.

3 data tables

'ALL'.

No description provided.

No description provided.