Figure 4.0
Data from Figure 4
10.17182/hepdata.136560.v1/t1
Azimuthal anisotropy $v_2\{BB\}$ as a function of transverse momentum $p_T$ in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 4
10.17182/hepdata.136560.v1/t1
Azimuthal anisotropy $v_2\{BB\}$ as a function of transverse momentum $p_T$ in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 4
10.17182/hepdata.136560.v1/t2
Azimuthal anisotropy $v_2\{BF\}$ as a function of transverse momentum $p_T$ in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 5.0
10.17182/hepdata.136560.v1/t3
Azimuthal anisotropy $v_2\{BB\}$ as a function of transverse momentum $p_T$ in $d$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 5.1
10.17182/hepdata.136560.v1/t4
Azimuthal anisotropy $v_2\{BF\}$ as a function of transverse momentum $p_T$ in $d$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 6.0
10.17182/hepdata.136560.v1/t5
Azimuthal anisotropy $v_2\{BB\}$ as a function of transverse momentum $p_T$ in $^3$He+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 6.1
10.17182/hepdata.136560.v1/t6
Azimuthal anisotropy $v_2\{BF\}$ as a function of transverse momentum $p_T$ in $^3$He+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 7.0
10.17182/hepdata.136560.v1/t7
Azimuthal anisotropy $v_2$ as a function of transverse momentum $p_T$ in $p$+$p$ collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 8.0
10.17182/hepdata.136560.v1/t8
Azimuthal anisotropy $v_2$ as a function of centrality in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 8.1
10.17182/hepdata.136560.v1/t9
Azimuthal anisotropy $v_2$ as a function of centrality in $d$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 8.2
10.17182/hepdata.136560.v1/t10
Azimuthal anisotropy $v_2$ as a function of centrality in $^3$He+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 9.0
10.17182/hepdata.136560.v1/t11
Azimuthal anisotropy $v_2$ as a function of charged particle multiplicity $dN_{ch}/d\eta$ in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 9.1
10.17182/hepdata.136560.v1/t12
Azimuthal anisotropy $v_2$ as a function of charged particle multiplicity $dN_{ch}/d\eta$ in $d$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 9.2
10.17182/hepdata.136560.v1/t13
Azimuthal anisotropy $v_2$ as a function of charged particle multiplicity $dN_{ch}/d\eta$ in $^3$He+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 9.3
10.17182/hepdata.136560.v1/t14
Azimuthal anisotropy $v_2$ as a function of charged particle multiplicity $dN_{ch}/d\eta$ in $p$+$p$ collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 10.0
10.17182/hepdata.136560.v1/t15
Azimuthal anisotropy ratio $R=v_2\{BF\}/v_2\{BB\}$ as a function of charged particle multiplicity $dN_{ch}/d\eta$ in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 10.1
10.17182/hepdata.136560.v1/t16
Azimuthal anisotropy ratio $R=v_2\{BF\}/v_2\{BB\}$ as a function of charged particle multiplicity $dN_{ch}/d\eta$ in $d$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 10.2
10.17182/hepdata.136560.v1/t17
Azimuthal anisotropy ratio $R=v_2\{BF\}/v_2\{BB\}$ as a function of charged particle multiplicity $dN_{ch}/d\eta$ in $^3$He+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Data from Figure 10.3
10.17182/hepdata.136560.v1/t18
Azimuthal anisotropy ratio $R=v_2\{BF\}/v_2\{BB\}$ as a function of charged particle multiplicity $dN_{ch}/d\eta$ in $p$+$p$ collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Loading Data...
Please try again later, or email info@hepdata.net if this error persists.
Your question will be emailed to those involved with the submission. Please mention the relevant table.
Please log in to HEPData to send a question.